Spaces:
Running
Running
File size: 13,764 Bytes
0289fc8 ada64d9 457ce08 0289fc8 e81c7e9 0289fc8 ff71d34 0289fc8 28370e2 0289fc8 28370e2 0289fc8 443d394 28370e2 0289fc8 28370e2 0289fc8 28370e2 0289fc8 e3cfbf6 a4040f1 0b91e7a a4040f1 e3cfbf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# File: prompts.py
DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection.
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
<output>
{
"Document": {
"Title": "Document Title",
"Author": "Author Name",
"Date": "YYYY-MM-DD",
"Version": "1.0",
"Sections": [
{
"SectionNumber": "1",
"Title": "Section Title",
"Content": "Specific prompt or instruction for generating content for this section",
"Subsections": [
{
"SectionNumber": "1.1",
"Title": "Subsection Title",
"Content": "Specific prompt or instruction for generating content for this subsection"
}
]
}
]
}
}
</output>"""
DOCUMENT_OUTLINE_PROMPT_USER = """<prompt>{query}</prompt>"""
DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, You need to output only the content requested in the section in the prompt.
FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags
<overall_objective>{overall_objective}</overall_objective>
<document_layout>{document_layout}</document_layout>"""
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
# File: app.py
import os
import json
import re
import time
import asyncio
from typing import List, Dict, Optional, Any, Callable
from openai import OpenAI
import logging
import functools
from fastapi import APIRouter, HTTPException
from pydantic import BaseModel
from fastapi_cache.decorator import cache
#from prompts import *
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
def log_execution(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
logger.info(f"Executing {func.__name__}")
try:
result = func(*args, **kwargs)
logger.info(f"{func.__name__} completed successfully")
return result
except Exception as e:
logger.error(f"Error in {func.__name__}: {e}")
raise
return wrapper
class AIClient:
def __init__(self):
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key="sk-or-v1-"+os.environ['OPENROUTER_API_KEY']
)
@log_execution
def generate_response(
self,
messages: List[Dict[str, str]],
model: str = "openai/gpt-4o-mini",
max_tokens: int = 32000
) -> Optional[str]:
if not messages:
return None
response = self.client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
stream=False
)
return response.choices[0].message.content
class DocumentGenerator:
def __init__(self, ai_client: AIClient):
self.ai_client = ai_client
self.document_outline = None
self.content_messages = []
@staticmethod
def extract_between_tags(text: str, tag: str) -> str:
pattern = f"<{tag}>(.*?)</{tag}>"
match = re.search(pattern, text, re.DOTALL)
return match.group(1).strip() if match else ""
@staticmethod
def remove_duplicate_title(content: str, title: str, section_number: str) -> str:
patterns = [
rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
rf"^#+\s*{re.escape(title)}",
rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
rf"^{re.escape(title)}",
]
for pattern in patterns:
content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE)
return content.lstrip()
@log_execution
def generate_document_outline(self, query: str, max_retries: int = 3) -> Optional[Dict]:
messages = [
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM},
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query)}
]
for attempt in range(max_retries):
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o")
outline_json_text = self.extract_between_tags(outline_response, "output")
try:
self.document_outline = json.loads(outline_json_text)
return self.document_outline
except json.JSONDecodeError as e:
if attempt < max_retries - 1:
logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}")
logger.info("Retrying...")
else:
logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}")
return None
@log_execution
def generate_content(self, title: str, content_instruction: str, section_number: str) -> str:
self.content_messages.append({
"role": "user",
"content": DOCUMENT_SECTION_PROMPT_USER.format(
section_or_subsection_title=title,
content_instruction=content_instruction
)
})
section_response = self.ai_client.generate_response(self.content_messages)
content = self.extract_between_tags(section_response, "response")
content = self.remove_duplicate_title(content, title, section_number)
self.content_messages.append({
"role": "assistant",
"content": section_response
})
return content
@log_execution
def generate_document(self, query: str) -> Dict:
self.generate_document_outline(query)
if self.document_outline is None:
raise ValueError("Failed to generate a valid document outline")
overall_objective = query
document_layout = json.dumps(self.document_outline, indent=2)
self.content_messages = [
{
"role": "system",
"content": DOCUMENT_SECTION_PROMPT_SYSTEM.format(
overall_objective=overall_objective,
document_layout=document_layout
)
}
]
for section in self.document_outline["Document"].get("Sections", []):
section_title = section.get("Title", "")
section_number = section.get("SectionNumber", "")
content_instruction = section.get("Content", "")
logger.info(f"Generating content for section: {section_title}")
section["Content"] = self.generate_content(section_title, content_instruction, section_number)
for subsection in section.get("Subsections", []):
subsection_title = subsection.get("Title", "")
subsection_number = subsection.get("SectionNumber", "")
subsection_content_instruction = subsection.get("Content", "")
logger.info(f"Generating content for subsection: {subsection_title}")
subsection["Content"] = self.generate_content(subsection_title, subsection_content_instruction, subsection_number)
return self.document_outline
class MarkdownConverter:
@staticmethod
def slugify(text: str) -> str:
return re.sub(r'\W+', '-', text.lower())
@classmethod
def generate_toc(cls, sections: List[Dict]) -> str:
toc = "<div style='page-break-before: always;'></div>\n\n"
toc += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n"
toc += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n"
for section in sections:
section_number = section['SectionNumber']
section_title = section['Title']
toc += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n"
for subsection in section.get('Subsections', []):
subsection_number = subsection['SectionNumber']
subsection_title = subsection['Title']
toc += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n"
toc += "</nav>\n\n"
return toc
@classmethod
def convert_to_markdown(cls, document: Dict) -> str:
# First page with centered content
markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n"
markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n"
markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n"
markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n"
markdown += "</div>\n\n"
# Table of Contents on the second page
markdown += cls.generate_toc(document['Sections'])
# Main content
markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n"
for section in document['Sections']:
markdown += "<div style='page-break-before: always;'></div>\n\n"
section_number = section['SectionNumber']
section_title = section['Title']
markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n"
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n"
for subsection in section.get('Subsections', []):
subsection_number = subsection['SectionNumber']
subsection_title = subsection['Title']
markdown += f"<h3 id='{cls.slugify(subsection_title)}' style='color: #34495e;'>{subsection_number} {subsection_title}</h3>\n\n"
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{subsection['Content']}\n\n</div>\n\n"
markdown += "</div>"
return markdown
router = APIRouter()
class DocumentRequest(BaseModel):
query: str
class JsonDocumentResponse(BaseModel):
json_document: Dict
class MarkdownDocumentResponse(BaseModel):
markdown_document: str
@cache(expire=600*24*7)
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
async def generate_json_document_endpoint(request: DocumentRequest):
ai_client = AIClient()
document_generator = DocumentGenerator(ai_client)
try:
# Generate the JSON document
json_document = document_generator.generate_document(request.query)
return JsonDocumentResponse(json_document=json_document)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@cache(expire=600*24*7)
@router.post("/generate-document/markdown", response_model=MarkdownDocumentResponse)
async def generate_markdown_document_endpoint(request: DocumentRequest):
ai_client = AIClient()
document_generator = DocumentGenerator(ai_client)
try:
# Generate the JSON document
json_document = document_generator.generate_document(request.query)
# Convert to Markdown
markdown_document = MarkdownConverter.convert_to_markdown(json_document["Document"])
return MarkdownDocumentResponse(markdown_document=markdown_document)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@router.post("/generate-document-test", response_model=DocumentResponse)
async def test_generate_document_endpoint(request: DocumentRequest):
try:
# Load JSON document from file
json_path = os.path.join("output/document_generator", "ai-chatbot-prd.json")
with open(json_path, "r") as json_file:
json_document = json.load(json_file)
# Load Markdown document from file
md_path = os.path.join("output/document_generator", "ai-chatbot-prd.md")
with open(md_path, "r") as md_file:
markdown_document = md_file.read()
return DocumentResponse(
json_document=json_document,
markdown_document=markdown_document
)
except FileNotFoundError:
raise HTTPException(status_code=404, detail="Test files not found")
except json.JSONDecodeError:
raise HTTPException(status_code=500, detail="Error parsing JSON file")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
class CacheTestResponse(BaseModel):
result: str
execution_time: float
@router.get("/test-cache/{test_id}", response_model=CacheTestResponse)
@cache(expire=60) # Cache for 1 minute
async def test_cache(test_id: int):
start_time = time.time()
# Simulate some time-consuming operation
await asyncio.sleep(2)
result = f"Test result for ID: {test_id}"
end_time = time.time()
execution_time = end_time - start_time
return CacheTestResponse(
result=result,
execution_time=execution_time
) |