Spaces:
Running
Running
File size: 7,795 Bytes
16273f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
from langchain_core.messages import HumanMessage
import src.passage_finder as pf
import src.srf_bot as sb
import prompts.system_prompts as sp
import os
# Initialize PassageFinder and Chatbot
passage_finder = pf.PassageFinder()
chatbot = sb.SRFChatbot()
# Passage Finder functions
def respond_passage_finder(message):
config = passage_finder.get_configurable()
results = passage_finder.graph.invoke({"messages": [HumanMessage(content=message)]}, config)
documents = results.get('documents', [])
output = []
for doc in documents:
quotes = doc.metadata.get('matched_quotes', [])
publication = doc.metadata.get('publication_name', 'Unknown Publication')
chapter = doc.metadata.get('chapter_name', 'Unknown Chapter')
full_passage = doc.metadata.get('highlighted_content', '')
quote_text = "\n".join([f"• \"{q.quote}\"" for q in quotes])
output.append({
"quotes": quote_text,
"reference": f"{publication}: {chapter}",
"full_passage": full_passage
})
return output
def process_input_passage_finder(message):
results = respond_passage_finder(message)
html_output = "<div class='response-container'>"
for result in results:
html_output += f"""
<div class='result-item'>
<h3 class='reference'>{result['reference']}</h3>
<div class='quotes'>{result['quotes'].replace("• ", "<br>• ")}</div>
<details>
<summary>Show full passage</summary>
<div class='full-passage'>{result['full_passage']}</div>
</details>
</div>
"""
html_output += "</div>"
return html_output
# Chatbot functions
def respond_chatbot(query, history):
formatted_query = [HumanMessage(content=query)]
# Invoke the graph with properly formatted input
result = chatbot.graph.invoke({"messages": formatted_query}, chatbot.config)
# Get the passages from the graph and append to history if documents exist
state = chatbot.graph.get_state(config=chatbot.config).values
documents = state.get("documents")
passages = ''
if documents and len(documents) > 0:
for d in documents:
passages += f'<b>{d.metadata["publication_name"]} - {d.metadata["chapter_name"]}</b>\n{d.page_content}\n\n'
history.append((f'Passages: {query}', passages))
# Extract the assistant's response and append to history
response = result["messages"][-1].content
system_message_dropdown = state.get("system_message_dropdown")
history.append((query, f"<i>[{system_message_dropdown}]</i>\n" + response))
return history
# Define the CSS
css = """
body { background-color: #f0f0f0; }
.gradio-container { background-color: #ffffff; }
.response-container { border: 1px solid #e0e0e0; border-radius: 8px; padding: 20px; background-color: #f9f9f9; }
.result-item { margin-bottom: 20px; background-color: white; padding: 15px; border-radius: 5px; box-shadow: 0 2px 5px rgba(0,0,0,0.1); }
.reference { color: #2c3e50; margin-bottom: 10px; }
.quotes { font-style: italic; margin-bottom: 10px; }
.full-passage { margin-top: 10px; padding: 10px; background-color: #f0f0f0; border-radius: 5px; }
details summary { cursor: pointer; color: #3498db; font-weight: bold; }
details summary:hover { text-decoration: underline; }
/* Chatbot specific styles */
.gr-button { background-color: #333333; color: white; font-size: 18px; padding: 10px; }
.gr-textbox textarea { font-size: 18px; color: black; }
.gr-dropdown { font-size: 18px; color: black; }
.source-box { background-color: white; padding: 10px; border-radius: 8px; margin-top: 20px; color: black; border: 1px solid #D0D0D0; }
/* Dark mode and responsive styles */
@media (prefers-color-scheme: dark) {
.gradio-container { background-color: #1e1e1e; color: white; }
h1, h2, p { color: white; }
.gr-textbox textarea { background-color: #333333; color: white; }
.gr-button { background-color: #555555; color: white; }
.gr-dropdown { background-color: #333333; color: white; }
.source-box { background-color: #333333; color: white; border: 1px solid #555555; }
}
@media (max-width: 600px) {
.gr-row { flex-direction: column !important; }
.gr-column { width: 100% !important; }
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# SRF Teachings App")
with gr.Tabs():
with gr.TabItem("Passage Finder"):
gr.Markdown("Ask questions about Self-Realization Fellowship teachings and receive responses with relevant quotes.")
with gr.Row():
input_text_pf = gr.Textbox(
placeholder="Ask about the meaning of life, spirituality, or any other topic...",
label="Your Question"
)
submit_btn_pf = gr.Button("Submit", variant="primary")
output_area_pf = gr.HTML()
gr.Markdown("### Sources")
gr.Textbox(value="Journey to Self Realization, Second Coming of Christ, and Autobiography of a Yogi",
label="Available Sources", interactive=False)
submit_btn_pf.click(process_input_passage_finder, inputs=input_text_pf, outputs=output_area_pf)
gr.Examples(
examples=[
"What is the meaning of life?",
"Importance of good posture",
"How can I find inner peace?",
"What does Paramahansa Yogananda say about meditation?",
],
inputs=input_text_pf,
)
with gr.TabItem("Custom Chatbots"):
with gr.Row():
with gr.Column(scale=4):
chatbot_output = gr.Chatbot(height=600)
user_input_cb = gr.Textbox(placeholder="Type your question here...", label="Your Question", value="What is the meaning of life?")
submit_button_cb = gr.Button("Submit")
with gr.Column(scale=1):
system_prompt_dropdown = gr.Dropdown(
choices=list(sp.system_prompt_templates.keys()),
label="Select Chatbot Instructions",
value=list(sp.system_prompt_templates.keys())[0],
)
system_prompt_display = gr.Textbox(
value=sp.system_prompt_templates[list(sp.system_prompt_templates.keys())[0]],
label="Current Chatbot Instructions",
lines=5,
interactive=False
)
gr.Markdown("""
<div class="source-box">
<strong>Available sources:</strong>
<ul>
<li>Journey to Self-Realization</li>
<li>The Second Coming of Christ</li>
<li>Autobiography of a Yogi</li>
</ul>
</div>
""")
system_prompt_dropdown.change(
fn=chatbot.reset_system_prompt,
inputs=[system_prompt_dropdown],
outputs=[system_prompt_display]
)
submit_button_cb.click(
fn=respond_chatbot,
inputs=[user_input_cb, chatbot_output],
outputs=[chatbot_output]
)
# Access the secrets
username = os.getenv("USERNAME")
password = os.getenv("PASSWORD")
# Launch the interface
demo.launch(share=True, auth=(username, password), debug=True) |