srf_chatbot_v2 / app_old.py
nadaaaita's picture
passage finder version
5299cfa
raw
history blame
5.4 kB
import gradio as gr
import os
from langchain_core.messages import HumanMessage
import src.srf_bot as sb
import prompts.system_prompts as sp
# Initialize chatbot
chatbot = sb.SRFChatbot()
# Define the respond function
def respond(query, history):
formatted_query = [HumanMessage(content=query)]
# Invoke the graph with properly formatted input
result = chatbot.graph.invoke({"messages": formatted_query}, chatbot.config)
# Get the passages from the graph and append to history if documents exist
state = chatbot.graph.get_state(config=chatbot.config).values
documents = state.get("documents")
passages = ''
if documents and len(documents) > 0:
for d in documents:
passages += f'<b>{d.metadata["publication_name"]} - {d.metadata["chapter_name"]}</b>\n{d.page_content}\n\n'
history.append((f'Passages: {query}', passages))
# Extract the assistant's response and append to history
response = result["messages"][-1].content
system_message_dropdown = state.get("system_message_dropdown")
history.append((query, f"<i>[{system_message_dropdown}]</i>\n" + response))
return history
# Gradio interface with black and grey color scheme
with gr.Blocks(css="""
.gradio-container {
background-color: #F0F0F0;
font-family: 'Arial', sans-serif;
}
h1, h2, p {
color: black;
}
h1 {
font-size: 32px;
text-align: left;
}
h2 {
font-size: 24px;
}
p {
font-size: 18px;
margin-bottom: 15px;
}
.gr-button {
background-color: #333333;
color: white;
font-size: 18px;
padding: 10px;
}
.gr-textbox textarea {
font-size: 18px;
color: black;
}
.gr-dropdown {
font-size: 18px;
color: black;
}
.source-box {
background-color: white;
padding: 10px;
border-radius: 8px;
margin-top: 20px;
color: black;
border: 1px solid #D0D0D0;
}
/* Dark mode specific styles */
@media (prefers-color-scheme: dark) {
.gradio-container {
background-color: #1e1e1e; /* Dark background */
color: white; /* Light text color for contrast */
}
h1, h2, p {
color: white; /* Light text for headings */
}
.gr-textbox textarea {
background-color: #333333; /* Dark background for text area */
color: white; /* Light text color */
}
.gr-button {
background-color: #555555; /* Darker button for dark mode */
color: white;
}
.gr-dropdown {
background-color: #333333; /* Dark dropdown background */
color: white;
}
.source-box {
background-color: #333333; /* Dark background for sources box */
color: white;
border: 1px solid #555555; /* Lighter border for visibility */
}
}
@media (max-width: 600px) {
.gr-row { flex-direction: column !important; }
.gr-column { width: 100% !important; }
}
""") as demo:
# Title
gr.Markdown("# SRF Chatbot")
with gr.Row(elem_classes="gr-row"):
with gr.Column(scale=4, elem_classes="gr-column"):
# Chatbot interface
chatbot_output = gr.Chatbot(height=600) # Increased height for longer chat interface
user_input = gr.Textbox(placeholder="Type your question here...", label="Your Question", value="What is the meaning of life?")
submit_button = gr.Button("Submit")
with gr.Column(scale=1, elem_classes="gr-column"):
# Dropdown to select system prompts
system_prompt_dropdown = gr.Dropdown(
choices=list(sp.system_prompt_templates.keys()),
label="Select Chatbot Instructions",
value=list(sp.system_prompt_templates.keys())[0],
elem_classes="gr-dropdown"
)
# Display the selected system prompt
system_prompt_display = gr.Textbox(
value=sp.system_prompt_templates[list(sp.system_prompt_templates.keys())[0]],
label="Current Chatbot Instructions",
lines=5,
interactive=False
)
# Sources box (Now white, matching the other boxes)
gr.Markdown("""
<div class="source-box">
<strong>Available sources:</strong>
<ul>
<li>Journey to Self-Realization</li>
<li>The Second Coming of Christ</li>
<li>Autobiography of a Yogi</li>
</ul>
</div>
""")
# Update system prompt display when a new prompt is selected
system_prompt_dropdown.change(
fn=chatbot.reset_system_prompt,
inputs=[system_prompt_dropdown],
outputs=[system_prompt_display]
)
# Submit button logic to handle chatbot conversation
submit_button.click(
fn=respond,
inputs=[user_input, chatbot_output],
outputs=[chatbot_output]
)
# Access the secrets
username = os.getenv("USERNAME")
password = os.getenv("PASSWORD")
# Launch the interface
demo.launch(share=True, auth=(username, password), debug=True)