akhaliq HF staff commited on
Commit
679a7db
·
1 Parent(s): e562ca7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from PIL import Image
3
+ import torchvision.transforms as transforms
4
+ import numpy as np
5
+ import json
6
+ import requests
7
+ import matplotlib.pyplot as plt
8
+
9
+ import gradio as gr
10
+
11
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
12
+
13
+ efficientnet = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_efficientnet_b0', pretrained=True)
14
+ utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
15
+
16
+ efficientnet.eval().to(device)
17
+
18
+ def inference(img):
19
+ batch = torch.cat(
20
+ [utils.prepare_input_from_uri(img)]
21
+ ).to(device)
22
+ with torch.no_grad():
23
+ output = torch.nn.functional.softmax(efficientnet(batch), dim=1)
24
+
25
+
26
+ results = utils.pick_n_best(predictions=output, n=5)
27
+
28
+ return results
29
+
30
+ gr.Interface(inference,gr.inputs.Image(type="file"),"text").launch()