Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,23 @@ utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_
|
|
9 |
efficientnet.eval().to(device)
|
10 |
|
11 |
def inference(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
batch = torch.cat(
|
13 |
-
[
|
14 |
).to(device)
|
15 |
with torch.no_grad():
|
16 |
output = torch.nn.functional.softmax(efficientnet(batch), dim=1)
|
|
|
9 |
efficientnet.eval().to(device)
|
10 |
|
11 |
def inference(img):
|
12 |
+
|
13 |
+
img_transforms = transforms.Compose(
|
14 |
+
[transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]
|
15 |
+
)
|
16 |
+
|
17 |
+
img = img_transforms(img)
|
18 |
+
with torch.no_grad():
|
19 |
+
# mean and std are not multiplied by 255 as they are in training script
|
20 |
+
# torch dataloader reads data into bytes whereas loading directly
|
21 |
+
# through PIL creates a tensor with floats in [0,1] range
|
22 |
+
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
|
23 |
+
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
|
24 |
+
img = img.float()
|
25 |
+
img = img.unsqueeze(0).sub_(mean).div_(std)
|
26 |
+
|
27 |
batch = torch.cat(
|
28 |
+
[img]
|
29 |
).to(device)
|
30 |
with torch.no_grad():
|
31 |
output = torch.nn.functional.softmax(efficientnet(batch), dim=1)
|