akhaliq HF staff commited on
Commit
ba50c3f
·
1 Parent(s): 5f94ab7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -1,8 +1,11 @@
 
1
  import torch
2
  from PIL import Image
3
  from torchvision import transforms
4
  import gradio as gr
5
 
 
 
6
  model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
7
  model.eval()
8
  # Download an example image from the pytorch website
@@ -27,8 +30,7 @@ def inference(input_image):
27
  output = model(input_batch)
28
  # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
29
  probabilities = torch.nn.functional.softmax(output[0], dim=0)
30
- # Download ImageNet labels
31
- !wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
32
  # Read the categories
33
  with open("imagenet_classes.txt", "r") as f:
34
  categories = [s.strip() for s in f.readlines()]
 
1
+ import os
2
  import torch
3
  from PIL import Image
4
  from torchvision import transforms
5
  import gradio as gr
6
 
7
+ os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
8
+
9
  model = torch.hub.load('huawei-noah/ghostnet', 'ghostnet_1x', pretrained=True)
10
  model.eval()
11
  # Download an example image from the pytorch website
 
30
  output = model(input_batch)
31
  # The output has unnormalized scores. To get probabilities, you can run a softmax on it.
32
  probabilities = torch.nn.functional.softmax(output[0], dim=0)
33
+
 
34
  # Read the categories
35
  with open("imagenet_classes.txt", "r") as f:
36
  categories = [s.strip() for s in f.readlines()]