Spaces:
Running
on
Zero
Running
on
Zero
import os, json, random | |
import torch | |
import gradio as gr | |
import spaces | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from huggingface_hub import login, hf_hub_download | |
import pyreft | |
import pyvene as pv | |
from threading import Thread | |
from typing import Iterator | |
import torch.nn.functional as F | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
login(token=HF_TOKEN) | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 128 # smaller default to save memory | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
css = """ | |
#alert-message textarea { | |
background-color: #e8f4ff; | |
border: 1px solid #cce5ff; | |
color: #084298; | |
font-size: 1.1em; | |
padding: 12px; | |
border-radius: 4px; | |
font-weight: 500; | |
} | |
.concept-help { | |
font-size: 0.9em; | |
color: #666; | |
margin-top: 4px; | |
font-style: italic; | |
} | |
""" | |
def load_jsonl(jsonl_path): | |
jsonl_data = [] | |
with open(jsonl_path, 'r') as f: | |
for line in f: | |
data = json.loads(line) | |
jsonl_data.append(data) | |
return jsonl_data | |
class Steer(pv.SourcelessIntervention): | |
"""Steer model via activation addition""" | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs, keep_last_dim=True) | |
self.proj = torch.nn.Linear( | |
self.embed_dim, kwargs["latent_dim"], bias=False) | |
self.subspace_generator = kwargs["subspace_generator"] | |
def steer(self, base, source=None, subspaces=None): | |
if subspaces["steer"]["subspace_gen_inputs"] is not None: | |
# we call our subspace generator to generate the subspace on-the-fly. | |
raw_steering_vec = self.subspace_generator( | |
subspaces["steer"]["subspace_gen_inputs"]["input_ids"], | |
subspaces["steer"]["subspace_gen_inputs"]["attention_mask"], | |
)[0] | |
steering_vec = torch.tensor(subspaces["steer"]["mag"]) * \ | |
raw_steering_vec.unsqueeze(dim=0) | |
return base + steering_vec | |
else: | |
steering_vec = torch.tensor(subspaces["steer"]["mag"]) * \ | |
self.proj.weight[subspaces["steer"]["idx"]].unsqueeze(dim=0) | |
return base + steering_vec | |
def forward(self, base, source=None, subspaces=None): | |
if subspaces == None: | |
return base | |
if subspaces["detect"] is not None: | |
if subspaces["detect"]["subspace_gen_inputs"] is not None: | |
# we call our subspace generator to generate the subspace on-the-fly. | |
raw_detection_vec = self.subspace_generator( | |
subspaces["detect"]["subspace_gen_inputs"]["input_ids"], | |
subspaces["detect"]["subspace_gen_inputs"]["attention_mask"], | |
)[0].unsqueeze(dim=-1) | |
else: | |
raw_detection_vec = self.proj.weight[subspaces["detect"]["idx"]].unsqueeze(dim=-1) | |
print(base.shape) | |
print(raw_detection_vec.shape) | |
detection_latent = torch.matmul(base, raw_detection_vec.to(base.dtype)).squeeze(dim=-1) # (batch_size, seq, 1) -> (batch_size, seq) | |
max_latent = torch.max(detection_latent, dim=-1).values[0] # (batch_size, seq) -> (batch_size) | |
print("max_latent", max_latent) | |
if max_latent > torch.tensor(subspaces["detect"]["mag"]): | |
print("Detected!") | |
return self.steer(base, source, subspaces) | |
else: | |
return base | |
else: | |
return self.steer(base, source, subspaces) | |
class RegressionWrapper(torch.nn.Module): | |
def __init__(self, base_model, hidden_size, output_dim): | |
super().__init__() | |
self.base_model = base_model | |
self.regression_head = torch.nn.Linear(hidden_size, output_dim) | |
def forward(self, input_ids, attention_mask): | |
outputs = self.base_model.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
output_hidden_states=True, | |
return_dict=True | |
) | |
last_hiddens = outputs.hidden_states[-1] | |
last_token_representations = last_hiddens[:, -1] | |
preds = self.regression_head(last_token_representations) | |
preds = F.normalize(preds, p=2, dim=-1) | |
return preds | |
# Check GPU | |
if not torch.cuda.is_available(): | |
print("Warning: Running on CPU, may be slow.") | |
# Load model & dictionary | |
model_id = "google/gemma-2-2b-it" | |
pv_model = None | |
tokenizer = None | |
concept_list = [] | |
concept_id_map = {} | |
if torch.cuda.is_available(): | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, device_map="cuda", torch_dtype=torch.bfloat16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# Download dictionary | |
weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt") | |
meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl") | |
params = torch.load(weight_path).cuda() | |
md = load_jsonl(meta_path) | |
concept_list = [item["concept"] for item in md] | |
concept_id_map = {} | |
# the reason to reindex is because there is one concept that is missing. | |
concept_reindex = 0 | |
for item in md: | |
concept_id_map[item["concept"]] = concept_reindex | |
concept_reindex += 1 | |
# load subspace generator. | |
base_tokenizer = AutoTokenizer.from_pretrained( | |
f"google/gemma-2-2b", model_max_length=512) | |
config = AutoConfig.from_pretrained("google/gemma-2-2b") | |
base_model = AutoModelForCausalLM.from_config(config) | |
subspace_generator_weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res-generator", filename="l20/weight.pt") | |
hidden_size = base_model.config.hidden_size | |
subspace_generator = RegressionWrapper( | |
base_model, hidden_size, hidden_size).bfloat16().to("cuda") | |
subspace_generator.load_state_dict(torch.load(subspace_generator_weight_path)) | |
print(f"Loading model from saved file {subspace_generator_weight_path}") | |
_ = subspace_generator.eval() | |
steer = Steer( | |
embed_dim=params.shape[0], latent_dim=params.shape[1], | |
subspace_generator=subspace_generator) | |
steer.proj.weight.data = params.float() | |
pv_model = pv.IntervenableModel({ | |
"component": f"model.layers[20].output", | |
"intervention": steer}, model=model) | |
terminators = [tokenizer.eos_token_id] if tokenizer else [] | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
detection_list: list[dict], | |
steering_list: list[dict], | |
max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS, | |
) -> Iterator[str]: | |
# limit to last 4 turns | |
start_idx = max(0, len(chat_history) - 4) | |
recent_history = chat_history[start_idx:] | |
# build list of messages | |
messages = [] | |
for rh in recent_history: | |
messages.append({"role": rh["role"], "content": rh["content"]}) | |
messages.append({"role": "user", "content": message}) | |
input_ids = torch.tensor([tokenizer.apply_chat_template( | |
messages, tokenize=True, add_generation_prompt=True)]).cuda() | |
# trim if needed | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
yield "[Truncated prior text]\n" | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
print("detection_list: ", detection_list) | |
print("steering_list: ", steering_list) | |
generate_kwargs = { | |
"base": {"input_ids": input_ids}, | |
"unit_locations": None, | |
"max_new_tokens": max_new_tokens, | |
"intervene_on_prompt": True, | |
"subspaces": [ | |
{ | |
"detect": { | |
"idx": int(detection_list[0]["idx"]), | |
"mag": detection_list[0]["internal_mag"]*50, | |
"subspace_gen_inputs": base_tokenizer(detection_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \ | |
if detection_list[0]["subspace_gen_text"] is not None else None | |
} if detection_list else None, | |
"steer": { | |
"idx": int(steering_list[0]["idx"]), | |
"mag": steering_list[0]["internal_mag"]*50, | |
"subspace_gen_inputs": base_tokenizer(steering_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \ | |
if steering_list[0]["subspace_gen_text"] is not None else None | |
} | |
} | |
] if steering_list else None, # if steering is not provided, we do not steer. | |
"streamer": streamer, | |
"do_sample": True | |
} | |
t = Thread(target=pv_model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = [] | |
for token_str in streamer: | |
partial_text.append(token_str) | |
yield "".join(partial_text) | |
def filter_concepts(search_text: str): | |
if not search_text.strip(): | |
return concept_list[:500] | |
filtered = [c for c in concept_list if search_text.lower() in c.lower()] | |
return filtered[:500] | |
def add_concept_to_list(selected_concept, user_slider_val, current_list): | |
if not selected_concept: | |
return current_list | |
selected_concept_text = None | |
if selected_concept.startswith("[New] "): | |
selected_concept_text = selected_concept[6:] | |
idx = 0 | |
else: | |
idx = concept_id_map[selected_concept] | |
internal_mag = user_slider_val | |
new_entry = { | |
"text": selected_concept, | |
"idx": idx, | |
"display_mag": user_slider_val, | |
"internal_mag": internal_mag, | |
"subspace_gen_text": selected_concept_text | |
} | |
# Add to the beginning of the list | |
current_list = [new_entry] | |
return current_list | |
def update_dropdown_choices(search_text, is_detection=False): | |
filtered = filter_concepts(search_text) | |
if not filtered or len(filtered) == 0: | |
alert_message = ( | |
"Good news! Based on the topic you provided, we will automatically generate a detector for you!" | |
) if is_detection else ( | |
"Good news! Based on the topic you provided, we will automatically generate a steering vector. Try it out by starting a chat!" | |
) | |
return gr.update( | |
choices=[], | |
value=None, | |
interactive=True | |
), gr.Textbox( | |
label="No matching topics found", | |
value=alert_message, | |
lines=3, | |
interactive=False, | |
visible=True, | |
elem_id="alert-message" | |
) | |
return gr.update( | |
choices=filtered, | |
value=filtered[0], | |
interactive=True, | |
visible=True | |
), gr.Textbox(visible=False) | |
with gr.Blocks(css=css, fill_height=True) as demo: | |
selected_detection = gr.State([]) | |
selected_subspaces = gr.State([]) | |
with gr.Row(min_height=500, equal_height=True): | |
# Left side: chat area | |
with gr.Column(scale=7): | |
gr.Markdown("""# Conditionally Steer AI Responses Based on Topics""") | |
gr.Markdown("""This is an experimental chatbot that you can steer using topics you care about: | |
Step 1: Choose a topic (e.g., "Google") to detect | |
Step 2: Choose a topic (e.g., "ethics") you want the model to discuss when the previous topic comes up | |
We intervene on Gemma-2-2B-it by adding steering vectors to the residual stream at layer 20.""") | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(), | |
textbox=gr.Textbox(placeholder="List some search engines with their pros and cons", container=True, scale=7, submit_btn=True), | |
additional_inputs=[selected_detection, selected_subspaces], | |
) | |
# Right side: concept detection and steering | |
with gr.Column(scale=3): | |
gr.Markdown("""#### Step 1: Choose a topic the model needs to recognize.""") | |
with gr.Group(): | |
detect_search = gr.Textbox( | |
label="Search for topics to detect", | |
placeholder="Try: 'Google'", | |
lines=1, | |
) | |
detect_msg = gr.TextArea(visible=False) | |
detect_dropdown = gr.Dropdown( | |
label="Choose a topic to detect (Click to see more!)", | |
interactive=True, | |
allow_custom_value=False, | |
) | |
detect_threshold = gr.Slider( | |
label="Detection sensitivity", | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.5, | |
) | |
gr.Markdown("---") | |
gr.Markdown("""#### Step 2: Choose another topic the model needs to discuss when it detects the topic above.""") | |
with gr.Group(): | |
search_box = gr.Textbox( | |
label="Search topics to steer", | |
placeholder="Try: 'ethics'", | |
lines=1, | |
) | |
msg = gr.TextArea(visible=False) | |
concept_dropdown = gr.Dropdown( | |
label="Choose a topic to steer the model (Click to see more!)", | |
interactive=True, | |
allow_custom_value=False, | |
) | |
concept_magnitude = gr.Slider( | |
label="Steering intensity", | |
minimum=-5, | |
maximum=5, | |
step=0.1, | |
value=3.5, | |
) | |
# Wire up events for detection | |
detect_search.input( | |
lambda x: update_dropdown_choices(x, is_detection=True), | |
[detect_search], | |
[detect_dropdown, detect_msg] | |
).then( | |
add_concept_to_list, | |
[detect_dropdown, detect_threshold, selected_detection], | |
[selected_detection] | |
) | |
detect_dropdown.select( | |
add_concept_to_list, | |
[detect_dropdown, detect_threshold, selected_detection], | |
[selected_detection] | |
) | |
detect_threshold.input( | |
add_concept_to_list, | |
[detect_dropdown, detect_threshold, selected_detection], | |
[selected_detection] | |
) | |
# Wire up events for steering | |
search_box.input( | |
lambda x: update_dropdown_choices(x, is_detection=False), | |
[search_box], | |
[concept_dropdown, msg] | |
).then( | |
add_concept_to_list, | |
[concept_dropdown, concept_magnitude, selected_subspaces], | |
[selected_subspaces] | |
) | |
concept_dropdown.select( | |
add_concept_to_list, | |
[concept_dropdown, concept_magnitude, selected_subspaces], | |
[selected_subspaces] | |
) | |
concept_magnitude.input( | |
add_concept_to_list, | |
[concept_dropdown, concept_magnitude, selected_subspaces], | |
[selected_subspaces] | |
) | |
demo.launch(share=True, height=1000) |