File size: 5,962 Bytes
eb9ca51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Stability AI

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

import torch
import comfy.model_management

def cast_bias_weight(s, input):
    bias = None
    non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
    if s.bias is not None:
        bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
        if s.bias_function is not None:
            bias = s.bias_function(bias)
    weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
    if s.weight_function is not None:
        weight = s.weight_function(weight)
    return weight, bias

class CastWeightBiasOp:
    comfy_cast_weights = False
    weight_function = None
    bias_function = None

class disable_weight_init:
    class Linear(torch.nn.Linear, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.linear(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv2d(torch.nn.Conv2d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class Conv3d(torch.nn.Conv3d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return self._conv_forward(input, weight, bias)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)


    class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input):
            if self.weight is not None:
                weight, bias = cast_bias_weight(self, input)
            else:
                weight = None
                bias = None
            return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
        def reset_parameters(self):
            return None

        def forward_comfy_cast_weights(self, input, output_size=None):
            num_spatial_dims = 2
            output_padding = self._output_padding(
                input, output_size, self.stride, self.padding, self.kernel_size,
                num_spatial_dims, self.dilation)

            weight, bias = cast_bias_weight(self, input)
            return torch.nn.functional.conv_transpose2d(
                input, weight, bias, self.stride, self.padding,
                output_padding, self.groups, self.dilation)

        def forward(self, *args, **kwargs):
            if self.comfy_cast_weights:
                return self.forward_comfy_cast_weights(*args, **kwargs)
            else:
                return super().forward(*args, **kwargs)

    @classmethod
    def conv_nd(s, dims, *args, **kwargs):
        if dims == 2:
            return s.Conv2d(*args, **kwargs)
        elif dims == 3:
            return s.Conv3d(*args, **kwargs)
        else:
            raise ValueError(f"unsupported dimensions: {dims}")


class manual_cast(disable_weight_init):
    class Linear(disable_weight_init.Linear):
        comfy_cast_weights = True

    class Conv2d(disable_weight_init.Conv2d):
        comfy_cast_weights = True

    class Conv3d(disable_weight_init.Conv3d):
        comfy_cast_weights = True

    class GroupNorm(disable_weight_init.GroupNorm):
        comfy_cast_weights = True

    class LayerNorm(disable_weight_init.LayerNorm):
        comfy_cast_weights = True

    class ConvTranspose2d(disable_weight_init.ConvTranspose2d):
        comfy_cast_weights = True