File size: 1,144 Bytes
04a8586 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from transformers import CLIPFeatureExtractor
from safety_checker import StableDiffusionSafetyChecker
import torch
from PIL import Image
import gradio as gr
from pathlib import Path
device = "cuda" if torch.cuda.is_available() else "cpu"
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
).to(device)
feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32")
import gradio as gr
def image_classifier(files):
images = [Image.open(file).convert("RGB").resize((512, 512)) for file in files]
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
has_nsfw_concepts = safety_checker(
images=[images], clip_input=safety_checker_input.pixel_values.to(torch.float16)
)
results = [
{"has_nsfw": nsfw, "file": Path(file).name}
for (nsfw, file) in zip(has_nsfw_concepts, files)
]
return {"results": results}
demo = gr.Interface(
fn=image_classifier,
inputs=gr.File(file_count="multiple", file_types=["image"]),
outputs="json",
api_name="classify",
)
demo.launch() |