Spaces:
Running
Running
File size: 5,466 Bytes
ef0e8a5 33e6b0a c0c3772 ef0e8a5 7ea18b4 be2b781 7ea18b4 be2b781 c0c3772 be2b781 c0c3772 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 1ef3995 ef0e8a5 c0c3772 72bd0bb 8ed1bef c0c3772 ef0e8a5 33e6b0a ef0e8a5 7ea18b4 ef0e8a5 1ef3995 ef0e8a5 33e6b0a ef0e8a5 c0c3772 ef0e8a5 c0c3772 ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 c1599d4 ef0e8a5 c1599d4 ef0e8a5 c0c3772 33e6b0a ef0e8a5 33e6b0a 014b354 33e6b0a ef0e8a5 c0c3772 ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a ef0e8a5 33e6b0a d443635 ef0e8a5 c0c3772 ef0e8a5 ac3a798 ef0e8a5 33e6b0a 15889a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import random
import spaces
import gradio as gr
import numpy as np
import torch
from diffusers import (
StableDiffusion3Pipeline,
SD3Transformer2DModel,
FlashFlowMatchEulerDiscreteScheduler,
AutoencoderTiny,
)
from peft import PeftModel
import os
from huggingface_hub import snapshot_download
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
model_path = snapshot_download(
repo_id="stabilityai/stable-diffusion-3-medium-diffusers",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="stable-diffusion-3-medium",
token=huggingface_token, # type a new token-id.
)
import spaces
device = "cuda" if torch.cuda.is_available() else "cpu"
transformer = SD3Transformer2DModel.from_pretrained(
model_path,
subfolder="transformer",
torch_dtype=torch.float16,
)
transformer = PeftModel.from_pretrained(transformer, "jasperai/flash-sd3")
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = StableDiffusion3Pipeline.from_pretrained(
model_path,
transformer=transformer,
torch_dtype=torch.float16,
text_encoder_3=None,
tokenizer_3=None,
)
pipe.vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesd3", torch_dtype=torch.float16
)
# pipe.vae.decoder.layers = torch.compile(
# pipe.vae.decoder.layers,
# fullgraph=True,
# dynamic=False,
# mode="max-autotune-no-cudagraphs",
# )
pipe.vae.config.shift_factor = 0.0
pipe = pipe.to(device)
else:
pipe = StableDiffusion3Pipeline.from_pretrained(
model_path,
transformer=transformer,
torch_dtype=torch.float16,
text_encoder_3=None,
tokenizer_3=None,
)
pipe = pipe.to(device)
pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(
model_path,
subfolder="scheduler",
)
pipe.set_progress_bar_config(disable=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
NUM_INFERENCE_STEPS = 4
@spaces.GPU
def infer(prompt, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
guidance_scale=0,
num_inference_steps=NUM_INFERENCE_STEPS,
generator=generator,
).images[0]
return image
examples = [
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
'a 3D render of a wizard raccoon holding a sign saying "SD3" with a magic wand.',
"A panda reading a book in a lush forest.",
"A raccoon trapped inside a glass jar full of colorful candies, the background is steamy with vivid colors",
"Pirate ship sailing on a sea with the milky way galaxy in the sky and purple glow lights",
"a cute cartoon fluffy rabbit pilot walking on a military aircraft carrier, 8k, cinematic",
"A 3d render of a futuristic city with a giant robot in the middle full of neon lights, pink and blue colors",
"A close up of an old elderly man with green eyes looking straight at the camera",
"photo of a huge red cat with green eyes sitting on a cloud in the sky, looking at the camera",
]
css = """
#col-container {
margin: 0 auto;
max-width: 712px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Flash Diffusion: FlashSD3 + TAESD3 ⚡️
[Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) with [Tiny AutoEncoder for Stable Diffusion 3](https://huggingface.co/madebyollin/taesd3)
"""
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
examples = gr.Examples(examples=examples, inputs=[prompt], cache_examples=False)
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
)
gr.on(
[
run_button.click,
seed.change,
randomize_seed.change,
prompt.submit,
prompt.change,
],
fn=infer,
inputs=[prompt, seed, randomize_seed],
outputs=[result],
show_progress="minimal",
show_api=True,
trigger_mode="always_last",
)
demo.queue().launch(show_api=True)
|