Spaces:
Running
on
Zero
Running
on
Zero
rafaaa2105
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,9 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import os
|
5 |
-
|
6 |
-
import spaces
|
7 |
-
|
8 |
import torch
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -17,7 +17,7 @@ else:
|
|
17 |
dtype = torch.float32
|
18 |
|
19 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
20 |
-
pipe = pipeline =
|
21 |
pipe.load_lora_weights('aleksa-codes/flux-ghibsky-illustration', weight_name='lora.safetensors')
|
22 |
pipe = pipe.to(device)
|
23 |
|
@@ -25,7 +25,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
25 |
MAX_IMAGE_SIZE = 1024
|
26 |
|
27 |
|
28 |
-
@spaces.GPU
|
29 |
def infer(
|
30 |
prompt,
|
31 |
seed=42,
|
@@ -41,16 +41,17 @@ def infer(
|
|
41 |
|
42 |
generator = torch.Generator().manual_seed(seed)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
|
56 |
examples = [
|
@@ -100,7 +101,7 @@ with gr.Blocks(css=css) as demo:
|
|
100 |
minimum=256,
|
101 |
maximum=MAX_IMAGE_SIZE,
|
102 |
step=32,
|
103 |
-
value=1024,
|
104 |
)
|
105 |
|
106 |
height = gr.Slider(
|
@@ -108,7 +109,7 @@ with gr.Blocks(css=css) as demo:
|
|
108 |
minimum=256,
|
109 |
maximum=MAX_IMAGE_SIZE,
|
110 |
step=32,
|
111 |
-
value=1024,
|
112 |
)
|
113 |
|
114 |
with gr.Row():
|
@@ -117,7 +118,7 @@ with gr.Blocks(css=css) as demo:
|
|
117 |
minimum=0.0,
|
118 |
maximum=10.0,
|
119 |
step=0.1,
|
120 |
-
value=3.5,
|
121 |
)
|
122 |
|
123 |
num_inference_steps = gr.Slider(
|
@@ -125,7 +126,7 @@ with gr.Blocks(css=css) as demo:
|
|
125 |
minimum=1,
|
126 |
maximum=50,
|
127 |
step=1,
|
128 |
-
value=28,
|
129 |
)
|
130 |
|
131 |
gr.Examples(examples=examples, inputs=[prompt])
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import os
|
5 |
+
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
6 |
+
import spaces
|
7 |
+
DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
|
8 |
import torch
|
9 |
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
17 |
dtype = torch.float32
|
18 |
|
19 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
20 |
+
pipe = pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", token=hf_token, torch_dtype=torch.bfloat16)
|
21 |
pipe.load_lora_weights('aleksa-codes/flux-ghibsky-illustration', weight_name='lora.safetensors')
|
22 |
pipe = pipe.to(device)
|
23 |
|
|
|
25 |
MAX_IMAGE_SIZE = 1024
|
26 |
|
27 |
|
28 |
+
@spaces.GPU
|
29 |
def infer(
|
30 |
prompt,
|
31 |
seed=42,
|
|
|
41 |
|
42 |
generator = torch.Generator().manual_seed(seed)
|
43 |
|
44 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
45 |
+
prompt=prompt,
|
46 |
+
guidance_scale=guidance_scale,
|
47 |
+
num_inference_steps=num_inference_steps,
|
48 |
+
width=width,
|
49 |
+
height=height,
|
50 |
+
generator=generator,
|
51 |
+
output_type="pil",
|
52 |
+
good_vae=good_vae,
|
53 |
+
):
|
54 |
+
yield img, seed
|
55 |
|
56 |
|
57 |
examples = [
|
|
|
101 |
minimum=256,
|
102 |
maximum=MAX_IMAGE_SIZE,
|
103 |
step=32,
|
104 |
+
value=1024,
|
105 |
)
|
106 |
|
107 |
height = gr.Slider(
|
|
|
109 |
minimum=256,
|
110 |
maximum=MAX_IMAGE_SIZE,
|
111 |
step=32,
|
112 |
+
value=1024,
|
113 |
)
|
114 |
|
115 |
with gr.Row():
|
|
|
118 |
minimum=0.0,
|
119 |
maximum=10.0,
|
120 |
step=0.1,
|
121 |
+
value=3.5,
|
122 |
)
|
123 |
|
124 |
num_inference_steps = gr.Slider(
|
|
|
126 |
minimum=1,
|
127 |
maximum=50,
|
128 |
step=1,
|
129 |
+
value=28,
|
130 |
)
|
131 |
|
132 |
gr.Examples(examples=examples, inputs=[prompt])
|