744/C/B0228844//Rohit_Jain commited on
Commit
5b47935
·
1 Parent(s): 222f6f5
birb-style ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 421b470c1c55d204152be94d590aa4e5a2dcd715
herge-style ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 6ddab2d3191715a679b9e6bbc38aa05baff1ffa0
indian-watercolor-portraits ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 89ff0bc8ae9b4cb0731796be374c3f9efe2b54dc
midjourney-style ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 4a3668469aedc8f883a88d11192156d0374bcce2
qr_code1.png ADDED
sd_utils.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy
3
+ import torch
4
+ from torch import autocast
5
+ from torchvision import transforms as tfms
6
+ import torch.nn.functional as F
7
+
8
+ import PIL
9
+ from PIL import Image
10
+
11
+ from diffusers import StableDiffusionPipeline
12
+ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, logging
13
+ from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, KDPM2DiscreteScheduler
14
+
15
+ # For video display:
16
+ from IPython.display import HTML
17
+ from matplotlib import pyplot as plt
18
+ from pathlib import Path
19
+ from tqdm.auto import tqdm
20
+ import cv2
21
+
22
+ bb = cv2.imread("./qr_code1.png")
23
+ bb = cv2.cvtColor(bb, cv2.COLOR_BGR2RGB)
24
+ tfm2 = tfms.Compose([
25
+ tfms.ToTensor(),
26
+ tfms.Resize([512, 512]),
27
+ tfms.CenterCrop(512),
28
+ #tfms.Normalize((0.6813,0.6813, 0.6813), (0.4549, 0.4549, 0.4549))
29
+ ])
30
+ img2 = tfm2(bb)
31
+ device = "cuda" if torch.cuda.is_available() else "cpu"
32
+ pretrained_model_name_or_path = "CompVis/stable-diffusion-v1-4"
33
+ # Load the autoencoder model which will be used to decode the latents into image space.
34
+ vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
35
+
36
+ # Load the tokenizer and text encoder to tokenize and encode the text.
37
+ tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
38
+ text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
39
+
40
+ # The UNet model for generating the latents.
41
+ unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
42
+
43
+ # The noise scheduler
44
+ scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
45
+ #scheduler = KDPM2DiscreteScheduler(num_train_timesteps=1000, beta_start=)
46
+
47
+ # To the GPU we go!
48
+ vae = vae.to(device)
49
+ text_encoder = text_encoder.to(device)
50
+ unet = unet.to(device)
51
+
52
+ pipe = StableDiffusionPipeline.from_pretrained(pretrained_model_name_or_path,torch_dtype=torch.float16).to(device)
53
+
54
+
55
+
56
+ # birb_embed = pipe.load_textual_inversion("sd-concepts-library/birb-style")
57
+ # herge_embed = pipe.load_textual_inversion("sd-concepts-library/herge-style")
58
+ # indian_water_color_embed = pipe.load_textual_inversion("sd-concepts-library/indian-watercolor-portraits")
59
+ # midjourney_embed = pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
60
+ # marc_allante_embed = pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
61
+
62
+ birb_embed = torch.load('./birb-style/learned_embeds.bin')
63
+ herge_embed = torch.load('./herge-style/learned_embeds.bin')
64
+ indian_water_color_embed = torch.load('./indian-watercolor-portraits/learned_embeds.bin')
65
+ midjourney_embed = torch.load('./midjourney-style/learned_embeds.bin')
66
+ marc_allante_embed = torch.load('./style-of-marc-allante/learned_embeds.bin')
67
+
68
+ style_seeds = {
69
+ 'birb': 321,
70
+ 'herge': 1,
71
+ 'indian_watercolor': 42,
72
+ 'midjourney': 8081,
73
+ 'marc_allante': 100
74
+ }
75
+
76
+
77
+
78
+ def qr_loss(images, qr_img):
79
+
80
+ #qr_img = 0.5 * qr_img
81
+ qr_img = qr_img.unsqueeze(0).to(device)
82
+ #error = F.mse_loss(images, qr_img, reduction='mean')
83
+ error = F.l1_loss(images, qr_img, reduction='mean')
84
+
85
+ return error
86
+
87
+ def set_timesteps(scheduler, num_inference_steps):
88
+ scheduler.set_timesteps(num_inference_steps)
89
+ scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
90
+
91
+ def pil_to_latent(input_im):
92
+ # Single image -> single latent in a batch (so size 1, 4, 64, 64)
93
+ with torch.no_grad():
94
+ latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
95
+ return 0.18215 * latent.latent_dist.sample()
96
+
97
+ def latents_to_pil(latents):
98
+ # bath of latents -> list of images
99
+ latents = (1 / 0.18215) * latents
100
+ with torch.no_grad():
101
+ image = vae.decode(latents).sample
102
+ image = (image / 2 + 0.5).clamp(0, 1)
103
+ image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
104
+ images = (image * 255).round().astype("uint8")
105
+ pil_images = [Image.fromarray(image) for image in images]
106
+ return pil_images
107
+
108
+ def get_output_embeds(input_embeddings):
109
+ # CLIP's text model uses causal mask, so we prepare it here:
110
+ bsz, seq_len = input_embeddings.shape[:2]
111
+ #causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
112
+ causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
113
+
114
+ # Getting the output embeddings involves calling the model with passing output_hidden_states=True
115
+ # so that it doesn't just return the pooled final predictions:
116
+ encoder_outputs = text_encoder.text_model.encoder(
117
+ inputs_embeds=input_embeddings,
118
+ attention_mask=None, # We aren't using an attention mask so that can be None
119
+ causal_attention_mask=causal_attention_mask.to(device),
120
+ output_attentions=None,
121
+ output_hidden_states=True, # We want the output embs not the final output
122
+ return_dict=None,
123
+ )
124
+
125
+ # We're interested in the output hidden state only
126
+ output = encoder_outputs[0]
127
+
128
+ # There is a final layer norm we need to pass these through
129
+ output = text_encoder.text_model.final_layer_norm(output)
130
+
131
+ # And now they're ready
132
+ return output
133
+
134
+ def build_causal_attention_mask(bsz, seq_len, dtype):
135
+ # lazily create causal attention mask, with full attention between the vision tokens
136
+ # pytorch uses additive attention mask; fill with -inf
137
+ mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
138
+ mask.fill_(torch.tensor(torch.finfo(dtype).min))
139
+ mask.triu_(1) # zero out the lower diagonal
140
+ mask = mask.unsqueeze(1) # expand mask
141
+ return mask
142
+
143
+ def generate_with_embs_custom_loss(prompt, text_embeddings, seed):
144
+ #prompt = "A labrador dog in a car" #@param
145
+ height = 512 # default height of Stable Diffusion
146
+ width = 512 # default width of Stable Diffusion
147
+ num_inference_steps = 50 #@param # Number of denoising steps
148
+ guidance_scale = 11 #@param # Scale for classifier-free guidance
149
+ generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
150
+ batch_size = 1
151
+ blue_loss_scale = 100 #@param
152
+
153
+ # Prep text
154
+ text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
155
+ with torch.no_grad():
156
+ text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
157
+
158
+ # And the uncond. input as before:
159
+ max_length = text_input.input_ids.shape[-1]
160
+ uncond_input = tokenizer(
161
+ [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
162
+ )
163
+ with torch.no_grad():
164
+ uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
165
+ text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
166
+
167
+ # Prep Scheduler
168
+ set_timesteps(scheduler, num_inference_steps)
169
+
170
+ # Prep latents
171
+ latents = torch.randn(
172
+ (batch_size, unet.in_channels, height // 8, width // 8),
173
+ generator=generator,
174
+ )
175
+ latents = latents.to(device)
176
+ latents = latents * scheduler.init_noise_sigma
177
+
178
+ # Loop
179
+ for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
180
+ # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
181
+ latent_model_input = torch.cat([latents] * 2)
182
+ sigma = scheduler.sigmas[i]
183
+ latent_model_input = scheduler.scale_model_input(latent_model_input, t)
184
+
185
+ # predict the noise residual
186
+ with torch.no_grad():
187
+ noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
188
+
189
+ # perform CFG guidance
190
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
191
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
192
+
193
+ #### ADDITIONAL GUIDANCE ###
194
+ if i%2 == 0:
195
+ # Requires grad on the latents
196
+ latents = latents.detach().requires_grad_()
197
+
198
+ # Get the predicted x0:
199
+ latents_x0 = latents - sigma * noise_pred
200
+ #latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
201
+
202
+ # Decode to image space
203
+ denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
204
+
205
+ # Calculate loss
206
+ #loss = blue_loss(denoised_images) * blue_loss_scale
207
+ #loss = purple_loss(denoised_images) * blue_loss_scale
208
+ loss = qr_loss(denoised_images, img2) * blue_loss_scale
209
+
210
+ # Occasionally print it out
211
+ if i%10==0:
212
+ print(i, 'loss:', loss.item())
213
+
214
+ # Get gradient
215
+ cond_grad = torch.autograd.grad(loss, latents)[0]
216
+
217
+ # Modify the latents based on this gradient
218
+ latents = latents.detach() - cond_grad * sigma**2
219
+
220
+ # Now step with scheduler
221
+ latents = scheduler.step(noise_pred, t, latents).prev_sample
222
+
223
+ return latents_to_pil(latents)[0]
224
+
style-of-marc-allante ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 6de4ce4972ae09f61d6e4caf377b9ca00898b8b4