|
"""iBleu metric.""" |
|
|
|
import datasets |
|
import sacrebleu as scb |
|
from packaging import version |
|
|
|
import evaluate |
|
|
|
|
|
_DESCRIPTION = """ |
|
Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with: |
|
Accuracy = (TP + TN) / (TP + TN + FP + FN) |
|
Where: |
|
TP: True positive |
|
TN: True negative |
|
FP: False positive |
|
FN: False negative |
|
""" |
|
|
|
|
|
_KWARGS_DESCRIPTION = """ |
|
Args: |
|
predictions (`list` of `int`): Predicted labels. |
|
references (`list` of `int`): Ground truth labels. |
|
normalize (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True. |
|
sample_weight (`list` of `float`): Sample weights Defaults to None. |
|
Returns: |
|
accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy. |
|
Examples: |
|
Example 1-A simple example |
|
>>> accuracy_metric = evaluate.load("accuracy") |
|
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) |
|
>>> print(results) |
|
{'accuracy': 0.5} |
|
Example 2-The same as Example 1, except with `normalize` set to `False`. |
|
>>> accuracy_metric = evaluate.load("accuracy") |
|
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False) |
|
>>> print(results) |
|
{'accuracy': 3.0} |
|
Example 3-The same as Example 1, except with `sample_weight` set. |
|
>>> accuracy_metric = evaluate.load("accuracy") |
|
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4]) |
|
>>> print(results) |
|
{'accuracy': 0.8778625954198473} |
|
""" |
|
|
|
|
|
_CITATION = """ |
|
@article{scikit-learn, |
|
title={Scikit-learn: Machine Learning in {P}ython}, |
|
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. |
|
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. |
|
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and |
|
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, |
|
journal={Journal of Machine Learning Research}, |
|
volume={12}, |
|
pages={2825--2830}, |
|
year={2011} |
|
} |
|
""" |
|
|
|
|
|
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) |
|
class ibleu(evaluate.Metric): |
|
def _info(self): |
|
if version.parse(scb.__version__) < version.parse("1.4.12"): |
|
raise ImportWarning( |
|
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" |
|
'You can install it with `pip install "sacrebleu>=1.4.12"`.' |
|
) |
|
return evaluate.MetricInfo( |
|
description=_DESCRIPTION, |
|
citation=_CITATION, |
|
inputs_description=_KWARGS_DESCRIPTION, |
|
features=[ |
|
datasets.Features( |
|
{ |
|
"inputs": datasets.Value("string", id="sequence"), |
|
"predictions": datasets.Value("string", id="sequence"), |
|
"references": datasets.Sequence( |
|
datasets.Value("string", id="sequence"), id="references" |
|
), |
|
} |
|
), |
|
datasets.Features( |
|
{ |
|
"inputs": datasets.Value("string", id="sequence"), |
|
"predictions": datasets.Value("string", id="sequence"), |
|
"references": datasets.Value("string", id="sequence"), |
|
} |
|
), |
|
], |
|
reference_urls=[ |
|
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html" |
|
], |
|
) |
|
|
|
def _compute( |
|
self, |
|
inputs, |
|
predictions, |
|
references, |
|
alpha=0.7, |
|
smooth_method="exp", |
|
smooth_value=None, |
|
force=False, |
|
lowercase=False, |
|
tokenize=None, |
|
use_effective_order=False, |
|
): |
|
|
|
if isinstance(references[0], str): |
|
references = [[ref] for ref in references] |
|
|
|
if isinstance(inputs[0], str): |
|
inputs = [[inp] for inp in inputs] |
|
else: |
|
raise ValueError("There can be only one input string") |
|
|
|
references_per_prediction = len(references[0]) |
|
if any(len(refs) != references_per_prediction for refs in references): |
|
raise ValueError("Sacrebleu requires the same number of references for each prediction") |
|
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)] |
|
|
|
tgt_bleu = scb.corpus_bleu( |
|
predictions, |
|
transformed_references, |
|
smooth_method=smooth_method, |
|
smooth_value=smooth_value, |
|
force=force, |
|
lowercase=lowercase, |
|
use_effective_order=use_effective_order, |
|
**(dict(tokenize=tokenize) if tokenize else {}), |
|
).score |
|
self_bleu = scb.corpus_bleu( |
|
predictions, |
|
inputs, |
|
smooth_method=smooth_method, |
|
smooth_value=smooth_value, |
|
force=force, |
|
lowercase=lowercase, |
|
use_effective_order=use_effective_order, |
|
**(dict(tokenize=tokenize) if tokenize else {}), |
|
).score |
|
output_dict = { |
|
"score": alpha * tgt_bleu - (1 - alpha) * self_bleu |
|
} |
|
return output_dict |