Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,212 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
from deepforest import main
|
|
|
3 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Initialize the deepforest model and use the released version
|
6 |
model = main.deepforest()
|
7 |
model.use_release()
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
"""
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# Launch the Gradio app
|
39 |
-
iface.launch()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
from deepforest import main
|
5 |
+
from deepforest import get_data
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
# from predict import extract_features, predict_similarity, compare_features, extract_features_cp
|
8 |
+
import os, re
|
9 |
+
import streamlit as st
|
10 |
+
import pandas as pd
|
11 |
+
from PIL import Image
|
12 |
+
import tempfile
|
13 |
+
from inference import split_image_from_dataframe
|
14 |
+
from datetime import datetime
|
15 |
+
from predict_vit import extract_features, predict_similarity, compare_features, extract_features_cp
|
16 |
+
from rag import generate_image, setup_client, setup_retriever
|
17 |
+
from predict_copy import extract_features_with_augmentation, extract_features_with_augmentation_cp
|
18 |
+
|
19 |
+
|
20 |
+
import rasterio
|
21 |
+
import geopandas as gpd
|
22 |
|
|
|
23 |
model = main.deepforest()
|
24 |
model.use_release()
|
25 |
|
26 |
+
# Set the page configuration
|
27 |
+
st.set_page_config(page_title="Wise-Vision", page_icon=":deciduous_tree:")
|
28 |
+
|
29 |
+
# Title and description
|
30 |
+
st.title("🌳 Wise-Vision")
|
31 |
+
st.subheader("AI + Environment Hackathon 2024")
|
32 |
+
|
33 |
+
# Sidebar information
|
34 |
+
st.sidebar.title("About")
|
35 |
+
st.sidebar.info(
|
36 |
"""
|
37 |
+
This app is designed for the AI + Environment Hackathon 2024.
|
38 |
+
Upload a panoramic image and specify a folder path to detect tree species in the image.
|
39 |
+
Upload a word file to integrate knowledge into the image.
|
40 |
+
Output will be a panoramic image with identified trees and knowledge symbols.
|
41 |
+
"""
|
42 |
+
)
|
43 |
+
|
44 |
+
st.sidebar.title("Contact")
|
45 |
+
st.sidebar.info(
|
46 |
"""
|
47 |
+
For more information, contact us at:
|
48 |
+
[raj.[email protected]]
|
49 |
+
"""
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
54 |
+
|
55 |
+
# Create a new folder within the script directory for storing cropped images
|
56 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
57 |
+
output_folder_name = f"output_{timestamp}"
|
58 |
+
output_image_folder = os.path.join(script_dir, output_folder_name)
|
59 |
+
os.makedirs(output_image_folder, exist_ok=True)
|
60 |
+
output_image_folder = os.path.abspath(output_image_folder)
|
61 |
+
# Define paths for the image and Excel file within the new folder
|
62 |
+
cropped_image_path = os.path.join(output_image_folder, f"panoramic_{timestamp}.png")
|
63 |
+
excel_output_path = os.path.join(output_image_folder, f"results_{timestamp}.xlsx")
|
64 |
+
|
65 |
+
# Input: Upload panoramic image
|
66 |
+
uploaded_image = st.file_uploader("Upload a panoramic image", type=['png', 'jpeg', 'JPG'])
|
67 |
+
|
68 |
+
# Input: Folder path for tree species detection
|
69 |
+
|
70 |
+
def extract_treespecies_features(folder_path):
|
71 |
+
image_files = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if f.endswith(('png', 'jpg', 'jpeg', '.JPG'))]
|
72 |
+
|
73 |
+
species_feature_list = [{"feature": extract_features_with_augmentation(file), "file_name": file} for file in image_files]
|
74 |
+
return species_feature_list
|
75 |
+
|
76 |
+
|
77 |
+
# print(species_feature_list[:2])
|
78 |
+
def perform_inference(cropped_images, species_feature_list, img_df):
|
79 |
+
st.success("Setting up OPENAI Client:")
|
80 |
+
client = setup_client()
|
81 |
+
st.success("Setting up knowledge database & BM25 retriever:")
|
82 |
+
retriever = setup_retriever()
|
83 |
+
st.success("Setting up BM25 Retriever:")
|
84 |
+
for img_idx, item in enumerate(cropped_images):
|
85 |
+
image = item["image"]
|
86 |
+
feature_cp = extract_features_with_augmentation_cp(image)
|
87 |
+
row_results = []
|
88 |
+
species_result = []
|
89 |
+
emoji = []
|
90 |
+
species_context = []
|
91 |
+
for idx, species in enumerate(species_feature_list):
|
92 |
+
# euclidean_dist, cos_sim = compare_features(feature_cp, species["feature"])
|
93 |
+
# print(f'Euclidean Distance: {euclidean_dist}')
|
94 |
+
# print(f'Cosine Similarity: {cos_sim}')
|
95 |
+
|
96 |
+
# Predict similarity
|
97 |
+
is_similar = predict_similarity(feature_cp, species["feature"], threshold=0.92)
|
98 |
+
# print(species)
|
99 |
+
# print(f'Are the images similar? {"Yes" if is_similar else "No"}')
|
100 |
+
|
101 |
+
result = "Yes" if is_similar else "No"
|
102 |
+
|
103 |
+
if result == "Yes":
|
104 |
+
item[f"result_{idx}"] = result
|
105 |
+
item[f"file_name_{idx}"] = species["file_name"]
|
106 |
+
row_results.append(species["file_name"])
|
107 |
+
# Regular expression to match the tree species name
|
108 |
+
species_pattern = r'identified_species\\([^\\]+) -'
|
109 |
+
|
110 |
+
# Search for the pattern in the file path
|
111 |
+
match = re.search(species_pattern, species["file_name"])
|
112 |
+
|
113 |
+
# Extract and print the tree species name if found
|
114 |
+
if match:
|
115 |
+
tree_species = match.group(1)
|
116 |
+
species_info = retriever.invoke(f"Scientific name:{tree_species}")
|
117 |
+
|
118 |
+
ans = generate_image(species_info, client)
|
119 |
+
emoji.append(ans)
|
120 |
+
text_context = [doc.page_content for doc in species_info]
|
121 |
+
text_context = ", ".join(text_context)
|
122 |
+
species_context.append(text_context)
|
123 |
+
# print(ans)
|
124 |
+
species_result.append(tree_species)
|
125 |
+
|
126 |
+
else:
|
127 |
+
print("Tree species name not found.")
|
128 |
+
img_df.at[img_idx, "species_identified"] = ", ".join(species_result) if species_result else "No similar species found"
|
129 |
+
img_df.at[img_idx, "result_file_path"] = ", ".join(row_results) if row_results else ""
|
130 |
+
img_df.at[img_idx, "emoji"] = ", ".join(emoji) if emoji else ""
|
131 |
+
img_df.at[img_idx, "retreived context"] = ", ".join(species_context) if species_context else ""
|
132 |
+
|
133 |
+
|
134 |
+
return cropped_images
|
135 |
+
|
136 |
+
|
137 |
+
# Function to simulate tree species detection
|
138 |
+
|
139 |
+
# Display uploaded image and detected tree species
|
140 |
+
if uploaded_image is not None:
|
141 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.JPG') as temp_file:
|
142 |
+
temp_file.write(uploaded_image.read())
|
143 |
+
temp_file_path = temp_file.name
|
144 |
+
# Open and display the image
|
145 |
+
# image = Image.open(uploaded_image)
|
146 |
+
sample_image_path = get_data(temp_file_path)
|
147 |
+
boxes = model.predict_image(path=sample_image_path, return_plot=False)
|
148 |
+
img_actual = model.predict_image(path=sample_image_path, return_plot=True, color=(137, 0, 0), thickness=9)
|
149 |
+
st.image(img_actual, caption='Segmented Panoramic Image', channels ='RGB', use_column_width=True)
|
150 |
+
st.success("Sample Dataframe:")
|
151 |
+
st.dataframe(boxes.head())
|
152 |
+
plt.imshow(img_actual[:,:,::-1])
|
153 |
+
# plt.show(img[:,:,::-1])
|
154 |
+
plt.savefig(cropped_image_path)
|
155 |
+
# if st.button("Next Step"):
|
156 |
+
|
157 |
+
accuracy_threshold = st.slider("Accuracy threshold for cropping images:",min_value=0.1, max_value=1.0, value=0.4)
|
158 |
+
images_list = split_image_from_dataframe(boxes, temp_file_path, output_folder_name)
|
159 |
+
image_width = 200
|
160 |
+
st.success("Sample Images:")
|
161 |
+
# Display the images in a row
|
162 |
+
col1, col2, col3 = st.columns(3)
|
163 |
+
|
164 |
+
with col1:
|
165 |
+
st.image(images_list[3]["image"], caption="Sample 1", width=image_width)
|
166 |
+
|
167 |
+
with col2:
|
168 |
+
st.image(images_list[4]["image"], caption="Sample 2", width=image_width)
|
169 |
+
|
170 |
+
with col3:
|
171 |
+
st.image(images_list[5]["image"], caption="Sample 3", width=image_width)
|
172 |
|
173 |
+
folder_path = 'D:/Downloads/image/plant_images/plant_images/drone_igapo_flooded_forest/identified_species'
|
174 |
+
|
175 |
+
species_feature_list = extract_treespecies_features(folder_path)
|
176 |
+
final_result = perform_inference(images_list, species_feature_list, boxes)
|
177 |
+
st.success("Final Data:")
|
178 |
+
st.dataframe(boxes)
|
179 |
+
boxes.to_excel(excel_output_path)
|
180 |
+
for index, row in boxes.iterrows():
|
181 |
+
species_identified = row['species_identified']
|
182 |
+
if species_identified !="No similar species found":
|
183 |
+
cropped_image_path = row['cropped_image_path']
|
184 |
+
result_file_path = row['result_file_path']
|
185 |
+
if type(result_file_path) == list:
|
186 |
+
result_file_path = result_file_path[0]
|
187 |
+
|
188 |
+
|
189 |
+
result_file_path = result_file_path.split(',')[0]
|
190 |
+
st.write(species_identified)
|
191 |
+
col1, col2 = st.columns(2)
|
192 |
+
with col1:
|
193 |
+
st.image(cropped_image_path, caption='Cropped Image')
|
194 |
+
with col2:
|
195 |
+
st.image(result_file_path, caption='Species Match')
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
|
203 |
+
# Detect tree species
|
204 |
+
# detected_species = detect_tree_species(image, folder_path)
|
205 |
+
|
206 |
+
# Display detected tree species
|
207 |
+
# st.write("### Detected Tree Species:")
|
208 |
+
# for species in detected_species:
|
209 |
+
# st.write(f"- {species}")
|
210 |
+
|
211 |
+
|
212 |
+
|
|
|
|
|
|