File size: 3,632 Bytes
eed3dce ff39d68 4240a50 560a994 58b2731 ff39d68 560a994 ff39d68 560a994 d250ad6 e839479 d250ad6 560a994 d59a44b ff39d68 c6df2b8 ff39d68 560a994 d26fdac 88a4d3b 3c577a6 6f488a4 d4f0f2b 58b2731 6f488a4 560a994 ca24370 560a994 b29c07d ca24370 7ea20fe 560a994 7ea20fe 560a994 ca24370 560a994 ff39d68 f9c9210 35b1732 f9c9210 560a994 358709b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import gradio as gr
import os
import spacy
nlp = spacy.load('en_core_web_sm')
auth_token = os.environ.get("HF_Token")
##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
def speech_to_text(speech):
text = asr(speech)["text"]
return text
##Summarization
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
resp = summarizer(text)
stext = resp[0]['summary_text']
return stext
##Fiscal Sentiment
#fin_model = pipeline("text-classification", model="demo-org/auditor_review_model", \
# tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
fin_model = pipeline("text-classification")
def text_to_sentiment(text):
sentiment = fin_model(text)[0]["label"]
return sentiment
##Company Extraction
def fin_ner(text):
print ("ner")
#ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER")
api = gr.Interface.load("dslim/bert-base-NER", src='models')
replaced_spans = api(text)
print (replaced_spans)
print ("spans2")
#replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
return replaced_spans
##Fiscal Sentiment by Sentence
def fin_ext(text):
print ("sent")
doc = nlp(text)
doc_sents = [sent for sent in doc.sents]
sents_list = []
for sent in doc.sents:
sents_list.append(sent.text)
results = fin_model(sents_list)
print (results)
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
fin_spans = []
fin_spans = list(zip(sents_list,results_list))
print (fin_spans)
return fin_spans
demo = gr.Blocks()
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
with gr.Row():
b1 = gr.Button("Recognize Speech")
with gr.Row():
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, restrained by a plunge in auto purchases and other big-ticket items, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding vehicles, sales rose 0.5% last month. The figures aren’t adjusted for inflation.")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
with gr.Row():
b2 = gr.Button("Summarize Text")
stext = gr.Textbox()
b2.click(summarize_text, inputs=text, outputs=stext)
with gr.Column():
with gr.Row():
b3 = gr.Button("Classify Overall Financial Sentiment")
label = gr.Label()
b3.click(text_to_sentiment, inputs=stext, outputs=label)
with gr.Row():
b4 = gr.Button("Extract Companies & Segments")
replaced_spans = gr.HighlightedText()
b4.click(fin_ner, inputs=text, outputs=replaced_spans)
with gr.Row():
b5 = gr.Button("Extract Financial Sentiment")
fin_spans = gr.HighlightedText()
b5.click(fin_ext, inputs=text, outputs=fin_spans)
demo.launch() |