File size: 3,632 Bytes
eed3dce
ff39d68
4240a50
560a994
 
 
58b2731
ff39d68
560a994
ff39d68
 
 
 
 
 
 
 
560a994
 
d250ad6
e839479
 
d250ad6
 
560a994
d59a44b
 
 
ff39d68
c6df2b8
ff39d68
560a994
 
d26fdac
88a4d3b
3c577a6
 
 
6f488a4
d4f0f2b
58b2731
6f488a4
560a994
 
 
ca24370
560a994
 
 
 
 
b29c07d
ca24370
7ea20fe
560a994
 
7ea20fe
560a994
ca24370
560a994
 
ff39d68
 
f9c9210
35b1732
f9c9210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560a994
358709b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import gradio as gr
import os
import spacy
nlp = spacy.load('en_core_web_sm')

auth_token = os.environ.get("HF_Token")

##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
    text = asr(audio)["text"]
    return text
def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

##Summarization 
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text(text):
    resp = summarizer(text)
    stext = resp[0]['summary_text']
    return stext

##Fiscal Sentiment
#fin_model = pipeline("text-classification", model="demo-org/auditor_review_model", \
#    tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
fin_model = pipeline("text-classification")
def text_to_sentiment(text):
    sentiment = fin_model(text)[0]["label"]
    return sentiment 

##Company Extraction    
def fin_ner(text):
    print ("ner")
    #ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER")
    api = gr.Interface.load("dslim/bert-base-NER", src='models')
    replaced_spans = api(text)
    print (replaced_spans)
    print ("spans2")
    #replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
    return replaced_spans    

##Fiscal Sentiment by Sentence
def fin_ext(text):
    print ("sent")
    doc = nlp(text)
    doc_sents = [sent for sent in doc.sents]
    sents_list = []
    for sent in doc.sents:
        sents_list.append(sent.text)
    results = fin_model(sents_list)
    print (results)
    results_list = []
    for i in range(len(results)):
        results_list.append(results[i]['label'])
    fin_spans = []
    fin_spans = list(zip(sents_list,results_list))
    print (fin_spans)
    return fin_spans    

demo = gr.Blocks()

demo = gr.Blocks()

with demo:
    with gr.Row():
        with gr.Column():
            audio_file = gr.inputs.Audio(source="microphone", type="filepath")
            with gr.Row():
                b1 = gr.Button("Recognize Speech") 
            with gr.Row():
                text = gr.Textbox(value="US retail sales fell in May for the first time in five months, restrained by a plunge in auto purchases and other big-ticket items, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding vehicles, sales rose 0.5% last month. The figures aren’t adjusted for inflation.")
                b1.click(speech_to_text, inputs=audio_file, outputs=text)
            with gr.Row():
                b2 = gr.Button("Summarize Text")
                stext = gr.Textbox()
                b2.click(summarize_text, inputs=text, outputs=stext)       
        with gr.Column():
            with gr.Row():
                b3 = gr.Button("Classify Overall Financial Sentiment")
                label = gr.Label()
                b3.click(text_to_sentiment, inputs=stext, outputs=label)
            with gr.Row():
                b4 = gr.Button("Extract Companies & Segments")
                replaced_spans = gr.HighlightedText()
                b4.click(fin_ner, inputs=text, outputs=replaced_spans)
            with gr.Row():
                b5 = gr.Button("Extract Financial Sentiment")
                fin_spans = gr.HighlightedText()
                b5.click(fin_ext, inputs=text, outputs=fin_spans)
    
demo.launch()