rajistics commited on
Commit
55a7c39
·
1 Parent(s): 87e7504

Updated names on buttons

Browse files
Files changed (1) hide show
  1. app.py +4 -18
app.py CHANGED
@@ -6,8 +6,6 @@ import gradio as gr
6
  import spacy
7
  nlp = spacy.load('en_core_web_sm')
8
 
9
- auth_token = os.environ.get("HF_Token")
10
-
11
  ##Speech Recognition
12
  asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
13
  def transcribe(audio):
@@ -24,10 +22,9 @@ def summarize_text(text):
24
  stext = resp[0]['summary_text']
25
  return stext
26
 
27
- ##Fiscal Sentiment
28
  #fin_model = pipeline("text-classification", model="demo-org/auditor_review_model",
29
  # tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
30
- #fin_model = pipeline("text-classification")
31
  fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
32
  def text_to_sentiment(text):
33
  sentiment = fin_model(text)[0]["label"]
@@ -35,36 +32,27 @@ def text_to_sentiment(text):
35
 
36
  ##Company Extraction
37
  def fin_ner(text):
38
- print ("ner")
39
- #ner_pipeline = pipeline("ner", model="dslim/bert-base-NER", tokenizer="dslim/bert-base-NER")
40
  api = gr.Interface.load("dslim/bert-base-NER", src='models')
41
  replaced_spans = api(text)
42
- print (replaced_spans)
43
- print ("spans2")
44
- #replaced_spans = [(key, None) if value=='No Disease' else (key, value) for (key, value) in spans]
45
  return replaced_spans
46
 
47
  ##Fiscal Sentiment by Sentence
48
  def fin_ext(text):
49
- print ("sent")
50
  doc = nlp(text)
51
  doc_sents = [sent for sent in doc.sents]
52
  sents_list = []
53
  for sent in doc.sents:
54
  sents_list.append(sent.text)
55
  results = fin_model(sents_list)
56
- print (results)
57
  results_list = []
58
  for i in range(len(results)):
59
  results_list.append(results[i]['label'])
60
  fin_spans = []
61
  fin_spans = list(zip(sents_list,results_list))
62
- print (fin_spans)
63
  return fin_spans
64
 
65
  ##Forward Looking Statement
66
  def fls(text):
67
- print ("fls")
68
  doc = nlp(text)
69
  doc_sents = [sent for sent in doc.sents]
70
  sents_list = []
@@ -72,13 +60,11 @@ def fls(text):
72
  sents_list.append(sent.text)
73
  fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
74
  results = fls_model(sents_list)
75
- print (results)
76
  results_list = []
77
  for i in range(len(results)):
78
  results_list.append(results[i]['label'])
79
  fls_spans = []
80
  fls_spans = list(zip(sents_list,results_list))
81
- print (fls_spans)
82
  return fls_spans
83
 
84
  demo = gr.Blocks()
@@ -97,11 +83,11 @@ with demo:
97
  stext = gr.Textbox()
98
  b2.click(summarize_text, inputs=text, outputs=stext)
99
  with gr.Row():
100
- b3 = gr.Button("Classify Overall Financial Sentiment")
101
  label = gr.Label()
102
  b3.click(text_to_sentiment, inputs=stext, outputs=label)
103
  with gr.Column():
104
- b5 = gr.Button("Extract Financial Sentiment")
105
  with gr.Row():
106
  fin_spans = gr.HighlightedText()
107
  b5.click(fin_ext, inputs=text, outputs=fin_spans)
@@ -109,7 +95,7 @@ with demo:
109
  fls_spans = gr.HighlightedText()
110
  b5.click(fls, inputs=text, outputs=fls_spans)
111
  with gr.Row():
112
- b4 = gr.Button("Extract Companies & Segments")
113
  replaced_spans = gr.HighlightedText()
114
  b4.click(fin_ner, inputs=text, outputs=replaced_spans)
115
 
 
6
  import spacy
7
  nlp = spacy.load('en_core_web_sm')
8
 
 
 
9
  ##Speech Recognition
10
  asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
11
  def transcribe(audio):
 
22
  stext = resp[0]['summary_text']
23
  return stext
24
 
25
+ ##Fiscal Tone Analysis
26
  #fin_model = pipeline("text-classification", model="demo-org/auditor_review_model",
27
  # tokenizer="demo-org/auditor_review_model",use_auth_token=auth_token)
 
28
  fin_model= pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
29
  def text_to_sentiment(text):
30
  sentiment = fin_model(text)[0]["label"]
 
32
 
33
  ##Company Extraction
34
  def fin_ner(text):
 
 
35
  api = gr.Interface.load("dslim/bert-base-NER", src='models')
36
  replaced_spans = api(text)
 
 
 
37
  return replaced_spans
38
 
39
  ##Fiscal Sentiment by Sentence
40
  def fin_ext(text):
 
41
  doc = nlp(text)
42
  doc_sents = [sent for sent in doc.sents]
43
  sents_list = []
44
  for sent in doc.sents:
45
  sents_list.append(sent.text)
46
  results = fin_model(sents_list)
 
47
  results_list = []
48
  for i in range(len(results)):
49
  results_list.append(results[i]['label'])
50
  fin_spans = []
51
  fin_spans = list(zip(sents_list,results_list))
 
52
  return fin_spans
53
 
54
  ##Forward Looking Statement
55
  def fls(text):
 
56
  doc = nlp(text)
57
  doc_sents = [sent for sent in doc.sents]
58
  sents_list = []
 
60
  sents_list.append(sent.text)
61
  fls_model = pipeline("text-classification", model="yiyanghkust/finbert-fls", tokenizer="yiyanghkust/finbert-fls")
62
  results = fls_model(sents_list)
 
63
  results_list = []
64
  for i in range(len(results)):
65
  results_list.append(results[i]['label'])
66
  fls_spans = []
67
  fls_spans = list(zip(sents_list,results_list))
 
68
  return fls_spans
69
 
70
  demo = gr.Blocks()
 
83
  stext = gr.Textbox()
84
  b2.click(summarize_text, inputs=text, outputs=stext)
85
  with gr.Row():
86
+ b3 = gr.Button("Classify Financial Tone")
87
  label = gr.Label()
88
  b3.click(text_to_sentiment, inputs=stext, outputs=label)
89
  with gr.Column():
90
+ b5 = gr.Button("Financial Tone and Forward Looking Statement Analysis")
91
  with gr.Row():
92
  fin_spans = gr.HighlightedText()
93
  b5.click(fin_ext, inputs=text, outputs=fin_spans)
 
95
  fls_spans = gr.HighlightedText()
96
  b5.click(fls, inputs=text, outputs=fls_spans)
97
  with gr.Row():
98
+ b4 = gr.Button("Identify Companies & Locations")
99
  replaced_spans = gr.HighlightedText()
100
  b4.click(fin_ner, inputs=text, outputs=replaced_spans)
101