Spaces:
Runtime error
Runtime error
File size: 6,293 Bytes
81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 81d4aee 8ddc567 823ce87 8ddc567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import subprocess
import sys
import re
import pandas as pd
try:
import eyecite
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", "eyecite"])
finally:
from eyecite import find, clean
# @title
def full_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.year:
pattern = r"\([^)]*{}\)".format(
citation.metadata.year
) # Matches any word that ends with "year"
text = re.sub(pattern, "", text)
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.plaintiff:
text = text.replace(
f"{citation.metadata.plaintiff} v. {citation.metadata.defendant}", ""
)
publisher_date = " ".join(
i for i in (citation.metadata.court, citation.metadata.year) if i
)
if publisher_date:
text = text.replace(f"{publisher_date}", "")
if citation.metadata.extra:
text = text.replace(citation.metadata.extra, "")
return text
def supra_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.antecedent_guess:
text = text.replace(citation.metadata.antecedent_guess, "")
return text
def short_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.year:
pattern = r"\([^)]*{}\)".format(citation.metadata.year)
if citation.metadata.antecedent_guess:
text = text.replace(citation.metadata.antecedent_guess, "")
return text
def id_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
return text
def unknown_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
return text
def full_law_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
return text
def full_journal_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.year:
pattern = r"\([^)]*{}\)".format(
citation.metadata.year
) # Matches any word that ends with "year"
text = re.sub(pattern, "", text)
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
return text
def all_commas(text: str) -> str:
return re.sub(r"\,+", ",", text)
def all_dots(text: str) -> str:
return re.sub(r"\.+", ".", text)
functions_dict = {
"FullCaseCitation": full_case,
"SupraCitation": supra_case,
"ShortCaseCitation": short_case,
"IdCitation": id_case,
"UnknownCitation": unknown_case,
"FullLawCitation": full_law_case,
"FullJournalCitation": full_journal_case,
}
# @title
def remove_citations(input_text):
# clean text
plain_text = clean.clean_text(
input_text, ["html", "inline_whitespace", "underscores"]
)
# remove citations
found_citations = find.get_citations(plain_text)
for citation in found_citations:
plain_text = functions_dict[citation.__class__.__name__](citation, plain_text)
# clean text
plain_text = clean.clean_text(
plain_text,
["inline_whitespace", "underscores", "all_whitespace", all_commas, all_dots],
)
plain_text = clean.clean_text(plain_text, ["inline_whitespace", "all_whitespace"])
pattern = r"\*?\d*\s*I+\n"
plain_text = re.sub(pattern, "", plain_text)
pattern = r"\s[,.]"
plain_text = re.sub(pattern, "", plain_text)
return plain_text
def split_text(text):
words = text.split()
chunks = []
for i in range(0, len(words), 420):
chunks.append(" ".join(words[i : i + 430]))
return chunks
# @title
def chunk_text_to_paragraphs(text):
paragraphs = text.split("\n") # Split by empty line
# Remove leading and trailing whitespace from each paragraph
paragraphs = [p.strip() for p in paragraphs]
return paragraphs
# @title
def split_data(data, id2label, label2id):
data_dict = {
"author_name": [],
"label": [],
"category": [],
"case_name": [],
"url": [],
"text": [],
}
opinions_split = pd.DataFrame(data_dict)
opinions_split["label"] = opinions_split["label"].astype(int)
for index, row in data.iterrows():
# chunks = chunk_text_to_paragraphs(row['text'])
chunks = split_text(row["clean_text"])
for chunk in chunks:
if len(chunk) < 1000:
continue
tmp = pd.DataFrame(
{
"author_name": row["author_name"],
"label": [label2id[row["author_name"]]],
"category": row["category"],
"case_name": row["case_name"],
"url": [row["absolute_url"]],
"text": [chunk],
}
)
opinions_split = pd.concat([opinions_split, tmp])
return opinions_split
def chunk_data(data):
data_dict = {"text": []}
opinions_split = pd.DataFrame(data_dict)
chunks = split_text(data)
for chunk in chunks:
# if len(chunk) < 1000:
# continue
tmp = pd.DataFrame({"label": [200], "text": [chunk]})
opinions_split = pd.concat([opinions_split, tmp])
return opinions_split
|