Spaces:
Runtime error
Runtime error
from .cleaning import remove_citations, split_data, split_text, chunk_data | |
import pandas as pd | |
import numpy as np | |
import json | |
with open("utils/id2label.json", "r") as j: | |
id2label = json.loads(j.read()) | |
with open("utils/label2id.json", "r") as j: | |
label2id = json.loads(j.read()) | |
def normaliz_dict(d, target=1.0): | |
raw = sum(d.values()) | |
factor = target / raw | |
return {key: value * factor for key, value in d.items()} | |
def average_text(text, model, judges): | |
result = model(text) | |
new_res = [] | |
for d in result: | |
p = {} | |
for dicts in d: | |
if dicts["label"] in judges: | |
p[dicts["label"]] = dicts["score"] | |
p = normaliz_dict(p) | |
new_res.append(p) | |
pred = {} | |
for c in new_res: | |
for k, v in c.items(): | |
if k not in pred: | |
pred[k] = [round(v, 2)] | |
else: | |
pred[k].append(round(v, 2)) | |
sumary = {k: round(sum(v) / len(v), 2) for k, v in pred.items()} | |
sumary = normaliz_dict(sumary) | |
return dict(sorted(sumary.items(), key=lambda x: x[1], reverse=True)), new_res | |
# def find_case_by_name(df, name): | |
# return display( | |
# HTML( | |
# df[df["case_name"].str.contains(name)] | |
# .iloc[:, :-1] | |
# .to_html(render_links=True, escape=False) | |
# ) | |
# ) | |
# def head_df(df): | |
# return display( | |
# HTML(df.iloc[:, :-1].head().to_html(render_links=True, escape=False)) | |
# ) | |