Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from joblib import load | |
# Load the trained model and scaler | |
model = load('loandefaulter.joblib') | |
scaler = load('scaler.joblib') | |
# Define numerical features for scaling (only those that were used during training) | |
num_features = [ | |
'loan_amnt', 'int_rate', 'installment', 'annual_inc', 'dti', | |
'revol_bal', 'revol_util', 'total_acc', 'mort_acc' | |
] | |
# Create the Streamlit app | |
st.set_page_config(page_title='Loan Default Prediction', layout='wide') | |
# App title and description | |
st.markdown(""" | |
<style> | |
.title { font-size: 36px; font-weight: bold; color: #2E86C1; } | |
.description { font-size: 20px; color: #34495E; } | |
.input-container { margin-top: 20px; } | |
.slider-container { margin: 10px 0; } | |
</style> | |
<div class="title">Loan Default Prediction</div> | |
<div class="description">Enter the loan details below to get a prediction on whether the loan will be defaulted.</div> | |
""", unsafe_allow_html=True) | |
# Input fields with sliders | |
loan_amnt = st.slider('Loan Amount', min_value=0.0, max_value=1000000.0, step=1000.0, value=10000.0) | |
int_rate = st.slider('Interest Rate (%)', min_value=0.0, max_value=30.0, step=0.1, value=5.0) | |
installment = st.slider('EMI Amount', min_value=0.0, max_value=10000.0, step=10.0, value=200.0) | |
annual_inc = st.slider('Annual Income', min_value=0.0, max_value=1000000.0, step=1000.0, value=50000.0) | |
# CIBIL score input as a text field | |
cibil_score = st.text_input('CIBIL Score (Enter a number between 300 and 900)', value='700') | |
# Convert the CIBIL score input to a numeric value | |
try: | |
cibil_score = int(cibil_score) | |
except ValueError: | |
st.error("Please enter a valid number for CIBIL Score.") | |
# Set default values for the missing features | |
dti = 0.0 # Example default value for DTI | |
revol_bal = 0.0 # Example default value for Revolving Balance | |
revol_util = 0.0 # Example default value for Revolving Utilization | |
total_acc = 0 # Example default value for Total Accounts | |
mort_acc = 0 # Example default value for Mortgage Accounts | |
loan_amnt_by_income = loan_amnt / (annual_inc + 1) | |
# Create a DataFrame for the input | |
input_data = pd.DataFrame({ | |
'loan_amnt': [loan_amnt], | |
'int_rate': [int_rate], | |
'installment': [installment], | |
'annual_inc': [annual_inc], | |
'dti': [dti], | |
'revol_bal': [revol_bal], | |
'revol_util': [revol_util], | |
'total_acc': [total_acc], | |
'mort_acc': [mort_acc] | |
}) | |
# Scale the numerical features that were used to fit the scaler | |
input_data[num_features] = scaler.transform(input_data[num_features]) | |
# Add the additional feature (not part of scaling) | |
input_data['loan_amnt_by_income'] = [loan_amnt_by_income] | |
input_data['cibil_score'] = cibil_score | |
input_data = input_data[num_features + ['loan_amnt_by_income']] | |
# Predict using the model | |
if st.button('Predict'): | |
if 300 <= cibil_score <= 900: # Ensure CIBIL score is within the valid range | |
prediction = model.predict(input_data) | |
result = "Defaulted" if prediction[0] == 1 else "Not Defaulted" | |
color = "red" if prediction[0] == 1 else "green" | |
st.markdown(f""" | |
<div style="font-size: 24px; color: {color}; font-weight: bold;">Prediction: {result}</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.error("Please enter a CIBIL Score between 300 and 900.") | |