|
|
|
import os |
|
import openai |
|
import gradio as gr |
|
|
|
openai.api_key = os.environ.get('O_APIKey') |
|
|
|
Data_Read = os.environ.get('Data_Reader') |
|
ChurnData = os.environ.get('Churn_Data') |
|
ChurnData2 = os.environ.get('Churn_Data2') |
|
|
|
|
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, SummaryIndex, download_loader |
|
|
|
DataReader = download_loader(Data_Read) |
|
loader = DataReader() |
|
|
|
|
|
documents = loader.load_data(file=ChurnData) |
|
|
|
|
|
|
|
documents2 = loader.load_data(file=ChurnData2) |
|
documents = documents + documents2 |
|
|
|
|
|
|
|
index = VectorStoreIndex.from_documents(documents) |
|
query_engine = index.as_query_engine() |
|
|
|
def reply(message, history): |
|
answer = str(query_engine.query(message)) |
|
return answer |
|
|
|
Conversing = gr.ChatInterface(reply, chatbot=gr.Chatbot(height="70vh"), retry_btn=None,theme=gr.themes.Monochrome(), |
|
title = 'BT Accor Q&A', undo_btn = None, clear_btn = None, css='footer {visibility: hidden}').launch() |