File size: 23,276 Bytes
46300e9
 
 
 
 
 
 
 
cec7f65
46300e9
3cbf3d0
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
---
title: Crawl4AI
emoji: 😻
colorFrom: purple
colorTo: pink
sdk: docker
pinned: false
license: mit
app_port: 11235
---
<!-- port: 11235 -->


# πŸš€πŸ€– Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper.

<div align="center">

<a href="https://trendshift.io/repositories/11716" target="_blank"><img src="https://trendshift.io/api/badge/repositories/11716" alt="unclecode%2Fcrawl4ai | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>

[![GitHub Stars](https://img.shields.io/github/stars/unclecode/crawl4ai?style=social)](https://github.com/unclecode/crawl4ai/stargazers)
[![GitHub Forks](https://img.shields.io/github/forks/unclecode/crawl4ai?style=social)](https://github.com/unclecode/crawl4ai/network/members)

[![PyPI version](https://badge.fury.io/py/crawl4ai.svg)](https://badge.fury.io/py/crawl4ai)
[![Python Version](https://img.shields.io/pypi/pyversions/crawl4ai)](https://pypi.org/project/crawl4ai/)
[![Downloads](https://static.pepy.tech/badge/crawl4ai/month)](https://pepy.tech/project/crawl4ai)

<!-- [![Documentation Status](https://readthedocs.org/projects/crawl4ai/badge/?version=latest)](https://crawl4ai.readthedocs.io/) -->
[![License](https://img.shields.io/github/license/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/blob/main/LICENSE)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Security: bandit](https://img.shields.io/badge/security-bandit-yellow.svg)](https://github.com/PyCQA/bandit)
[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-2.1-4baaaa.svg)](code_of_conduct.md)

</div>

Crawl4AI is the #1 trending GitHub repository, actively maintained by a vibrant community. It delivers blazing-fast, AI-ready web crawling tailored for LLMs, AI agents, and data pipelines. Open source, flexible, and built for real-time performance, Crawl4AI empowers developers with unmatched speed, precision, and deployment ease.  

[✨ Check out latest update v0.4.24x](#-recent-updates)

πŸŽ‰ **Version 0.4.24x is out!** Major improvements in extraction strategies with enhanced JSON handling, SSL security, and Amazon product extraction. Plus, a completely revamped content filtering system! [Read the release notes β†’](https://crawl4ai.com/mkdocs/blog)

## 🧐 Why Crawl4AI?

1. **Built for LLMs**: Creates smart, concise Markdown optimized for RAG and fine-tuning applications.  
2. **Lightning Fast**: Delivers results 6x faster with real-time, cost-efficient performance.  
3. **Flexible Browser Control**: Offers session management, proxies, and custom hooks for seamless data access.  
4. **Heuristic Intelligence**: Uses advanced algorithms for efficient extraction, reducing reliance on costly models.  
5. **Open Source & Deployable**: Fully open-source with no API keysβ€”ready for Docker and cloud integration.  
6. **Thriving Community**: Actively maintained by a vibrant community and the #1 trending GitHub repository.

## πŸš€ Quick Start 

1. Install Crawl4AI:
```bash
# Install the package
pip install -U crawl4ai

# Run post-installation setup
crawl4ai-setup

# Verify your installation
crawl4ai-doctor
```

If you encounter any browser-related issues, you can install them manually:
```bash
python -m playwright install --with-deps chromium
```

2. Run a simple web crawl:
```python
import asyncio
from crawl4ai import *

async def main():
    async with AsyncWebCrawler() as crawler:
        result = await crawler.arun(
            url="https://www.nbcnews.com/business",
        )
        print(result.markdown)

if __name__ == "__main__":
    asyncio.run(main())
```

## ✨ Features 

<details>
<summary>πŸ“ <strong>Markdown Generation</strong></summary>

- 🧹 **Clean Markdown**: Generates clean, structured Markdown with accurate formatting.
- 🎯 **Fit Markdown**: Heuristic-based filtering to remove noise and irrelevant parts for AI-friendly processing.
- πŸ”— **Citations and References**: Converts page links into a numbered reference list with clean citations.
- πŸ› οΈ **Custom Strategies**: Users can create their own Markdown generation strategies tailored to specific needs.
- πŸ“š **BM25 Algorithm**: Employs BM25-based filtering for extracting core information and removing irrelevant content. 
</details>

<details>
<summary>πŸ“Š <strong>Structured Data Extraction</strong></summary>

- πŸ€– **LLM-Driven Extraction**: Supports all LLMs (open-source and proprietary) for structured data extraction.
- 🧱 **Chunking Strategies**: Implements chunking (topic-based, regex, sentence-level) for targeted content processing.
- 🌌 **Cosine Similarity**: Find relevant content chunks based on user queries for semantic extraction.
- πŸ”Ž **CSS-Based Extraction**: Fast schema-based data extraction using XPath and CSS selectors.
- πŸ”§ **Schema Definition**: Define custom schemas for extracting structured JSON from repetitive patterns.

</details>

<details>
<summary>🌐 <strong>Browser Integration</strong></summary>

- πŸ–₯️ **Managed Browser**: Use user-owned browsers with full control, avoiding bot detection.
- πŸ”„ **Remote Browser Control**: Connect to Chrome Developer Tools Protocol for remote, large-scale data extraction.
- πŸ”’ **Session Management**: Preserve browser states and reuse them for multi-step crawling.
- 🧩 **Proxy Support**: Seamlessly connect to proxies with authentication for secure access.
- βš™οΈ **Full Browser Control**: Modify headers, cookies, user agents, and more for tailored crawling setups.
- 🌍 **Multi-Browser Support**: Compatible with Chromium, Firefox, and WebKit.
- πŸ“ **Dynamic Viewport Adjustment**: Automatically adjusts the browser viewport to match page content, ensuring complete rendering and capturing of all elements.

</details>

<details>
<summary>πŸ”Ž <strong>Crawling & Scraping</strong></summary>

- πŸ–ΌοΈ **Media Support**: Extract images, audio, videos, and responsive image formats like `srcset` and `picture`.
- πŸš€ **Dynamic Crawling**: Execute JS and wait for async or sync for dynamic content extraction.
- πŸ“Έ **Screenshots**: Capture page screenshots during crawling for debugging or analysis.
- πŸ“‚ **Raw Data Crawling**: Directly process raw HTML (`raw:`) or local files (`file://`).
- πŸ”— **Comprehensive Link Extraction**: Extracts internal, external links, and embedded iframe content.
- πŸ› οΈ **Customizable Hooks**: Define hooks at every step to customize crawling behavior.
- πŸ’Ύ **Caching**: Cache data for improved speed and to avoid redundant fetches.
- πŸ“„ **Metadata Extraction**: Retrieve structured metadata from web pages.
- πŸ“‘ **IFrame Content Extraction**: Seamless extraction from embedded iframe content.
- πŸ•΅οΈ **Lazy Load Handling**: Waits for images to fully load, ensuring no content is missed due to lazy loading.
- πŸ”„ **Full-Page Scanning**: Simulates scrolling to load and capture all dynamic content, perfect for infinite scroll pages.

</details>

<details>
<summary>πŸš€ <strong>Deployment</strong></summary>

- 🐳 **Dockerized Setup**: Optimized Docker image with API server for easy deployment.
- πŸ”„ **API Gateway**: One-click deployment with secure token authentication for API-based workflows.
- 🌐 **Scalable Architecture**: Designed for mass-scale production and optimized server performance.
- βš™οΈ **DigitalOcean Deployment**: Ready-to-deploy configurations for DigitalOcean and similar platforms.

</details>

<details>
<summary>🎯 <strong>Additional Features</strong></summary>

- πŸ•ΆοΈ **Stealth Mode**: Avoid bot detection by mimicking real users.
- 🏷️ **Tag-Based Content Extraction**: Refine crawling based on custom tags, headers, or metadata.
- πŸ”— **Link Analysis**: Extract and analyze all links for detailed data exploration.
- πŸ›‘οΈ **Error Handling**: Robust error management for seamless execution.
- πŸ” **CORS & Static Serving**: Supports filesystem-based caching and cross-origin requests.
- πŸ“– **Clear Documentation**: Simplified and updated guides for onboarding and advanced usage.
- πŸ™Œ **Community Recognition**: Acknowledges contributors and pull requests for transparency.

</details>

## Try it Now!

✨ Play around with this [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SgRPrByQLzjRfwoRNq1wSGE9nYY_EE8C?usp=sharing)

✨ Visit our [Documentation Website](https://crawl4ai.com/mkdocs/)

## Installation πŸ› οΈ

Crawl4AI offers flexible installation options to suit various use cases. You can install it as a Python package or use Docker.

<details>
<summary>🐍 <strong>Using pip</strong></summary>

Choose the installation option that best fits your needs:

### Basic Installation

For basic web crawling and scraping tasks:

```bash
pip install crawl4ai
crawl4ai-setup # Setup the browser
```

By default, this will install the asynchronous version of Crawl4AI, using Playwright for web crawling.

πŸ‘‰ **Note**: When you install Crawl4AI, the `crawl4ai-setup` should automatically install and set up Playwright. However, if you encounter any Playwright-related errors, you can manually install it using one of these methods:

1. Through the command line:

   ```bash
   playwright install
   ```

2. If the above doesn't work, try this more specific command:

   ```bash
   python -m playwright install chromium
   ```

This second method has proven to be more reliable in some cases.

---

### Installation with Synchronous Version

The sync version is deprecated and will be removed in future versions. If you need the synchronous version using Selenium:

```bash
pip install crawl4ai[sync]
```

---

### Development Installation

For contributors who plan to modify the source code:

```bash
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai
pip install -e .                    # Basic installation in editable mode
```

Install optional features:

```bash
pip install -e ".[torch]"           # With PyTorch features
pip install -e ".[transformer]"     # With Transformer features
pip install -e ".[cosine]"          # With cosine similarity features
pip install -e ".[sync]"            # With synchronous crawling (Selenium)
pip install -e ".[all]"             # Install all optional features
```

</details>

<details>
<summary>🐳 <strong>Docker Deployment</strong></summary>

> πŸš€ **Major Changes Coming!** We're developing a completely new Docker implementation that will make deployment even more efficient and seamless. The current Docker setup is being deprecated in favor of this new solution.

### Current Docker Support

The existing Docker implementation is being deprecated and will be replaced soon. If you still need to use Docker with the current version:

- πŸ“š [Deprecated Docker Setup](./docs/deprecated/docker-deployment.md) - Instructions for the current Docker implementation
- ⚠️ Note: This setup will be replaced in the next major release

### What's Coming Next?

Our new Docker implementation will bring:
- Improved performance and resource efficiency
- Streamlined deployment process
- Better integration with Crawl4AI features
- Enhanced scalability options

Stay connected with our [GitHub repository](https://github.com/unclecode/crawl4ai) for updates!

</details>

---

### Quick Test

Run a quick test (works for both Docker options):

```python
import requests

# Submit a crawl job
response = requests.post(
    "http://localhost:11235/crawl",
    json={"urls": "https://example.com", "priority": 10}
)
task_id = response.json()["task_id"]

# Continue polling until the task is complete (status="completed")
result = requests.get(f"http://localhost:11235/task/{task_id}")
```

For more examples, see our [Docker Examples](https://github.com/unclecode/crawl4ai/blob/main/docs/examples/docker_example.py). For advanced configuration, environment variables, and usage examples, see our [Docker Deployment Guide](https://crawl4ai.com/mkdocs/basic/docker-deployment/).

</details>


## πŸ”¬ Advanced Usage Examples πŸ”¬

You can check the project structure in the directory [https://github.com/unclecode/crawl4ai/docs/examples](docs/examples). Over there, you can find a variety of examples; here, some popular examples are shared.

<details>
<summary>πŸ“ <strong>Heuristic Markdown Generation with Clean and Fit Markdown</strong></summary>

```python
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.content_filter_strategy import PruningContentFilter, BM25ContentFilter
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator

async def main():
    browser_config = BrowserConfig(
        headless=True,  
        verbose=True,
    )
    run_config = CrawlerRunConfig(
        cache_mode=CacheMode.ENABLED,
        markdown_generator=DefaultMarkdownGenerator(
            content_filter=PruningContentFilter(threshold=0.48, threshold_type="fixed", min_word_threshold=0)
        ),
        # markdown_generator=DefaultMarkdownGenerator(
        #     content_filter=BM25ContentFilter(user_query="WHEN_WE_FOCUS_BASED_ON_A_USER_QUERY", bm25_threshold=1.0)
        # ),
    )
    
    async with AsyncWebCrawler(config=browser_config) as crawler:
        result = await crawler.arun(
            url="https://docs.micronaut.io/4.7.6/guide/",
            config=run_config
        )
        print(len(result.markdown))
        print(len(result.fit_markdown))
        print(len(result.markdown_v2.fit_markdown))

if __name__ == "__main__":
    asyncio.run(main())
```

</details>

<details>
<summary>πŸ–₯️ <strong>Executing JavaScript & Extract Structured Data without LLMs</strong></summary>

```python
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
import json

async def main():
    schema = {
    "name": "KidoCode Courses",
    "baseSelector": "section.charge-methodology .w-tab-content > div",
    "fields": [
        {
            "name": "section_title",
            "selector": "h3.heading-50",
            "type": "text",
        },
        {
            "name": "section_description",
            "selector": ".charge-content",
            "type": "text",
        },
        {
            "name": "course_name",
            "selector": ".text-block-93",
            "type": "text",
        },
        {
            "name": "course_description",
            "selector": ".course-content-text",
            "type": "text",
        },
        {
            "name": "course_icon",
            "selector": ".image-92",
            "type": "attribute",
            "attribute": "src"
        }
    }
}

    extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)

    browser_config = BrowserConfig(
        headless=False,
        verbose=True
    )
    run_config = CrawlerRunConfig(
        extraction_strategy=extraction_strategy,
        js_code=["""(async () => {const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");for(let tab of tabs) {tab.scrollIntoView();tab.click();await new Promise(r => setTimeout(r, 500));}})();"""],
        cache_mode=CacheMode.BYPASS
    )
        
    async with AsyncWebCrawler(config=browser_config) as crawler:
        
        result = await crawler.arun(
            url="https://www.kidocode.com/degrees/technology",
            config=run_config
        )

        companies = json.loads(result.extracted_content)
        print(f"Successfully extracted {len(companies)} companies")
        print(json.dumps(companies[0], indent=2))


if __name__ == "__main__":
    asyncio.run(main())
```

</details>

<details>
<summary>πŸ“š <strong>Extracting Structured Data with LLMs</strong></summary>

```python
import os
import asyncio
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field

class OpenAIModelFee(BaseModel):
    model_name: str = Field(..., description="Name of the OpenAI model.")
    input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
    output_fee: str = Field(..., description="Fee for output token for the OpenAI model.")

async def main():
    browser_config = BrowserConfig(verbose=True)
    run_config = CrawlerRunConfig(
        word_count_threshold=1,
        extraction_strategy=LLMExtractionStrategy(
            # Here you can use any provider that Litellm library supports, for instance: ollama/qwen2
            # provider="ollama/qwen2", api_token="no-token", 
            provider="openai/gpt-4o", api_token=os.getenv('OPENAI_API_KEY'), 
            schema=OpenAIModelFee.schema(),
            extraction_type="schema",
            instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens. 
            Do not miss any models in the entire content. One extracted model JSON format should look like this: 
            {"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}."""
        ),            
        cache_mode=CacheMode.BYPASS,
    )
    
    async with AsyncWebCrawler(config=browser_config) as crawler:
        result = await crawler.arun(
            url='https://openai.com/api/pricing/',
            config=run_config
        )
        print(result.extracted_content)

if __name__ == "__main__":
    asyncio.run(main())
```

</details>

<details>
<summary>πŸ€– <strong>Using You own Browswer with Custome User Profile</strong></summary>

```python
import os, sys
from pathlib import Path
import asyncio, time
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode

async def test_news_crawl():
    # Create a persistent user data directory
    user_data_dir = os.path.join(Path.home(), ".crawl4ai", "browser_profile")
    os.makedirs(user_data_dir, exist_ok=True)

    browser_config = BrowserConfig(
        verbose=True,
        headless=True,
        user_data_dir=user_data_dir,
        use_persistent_context=True,
    )
    run_config = CrawlerRunConfig(
        cache_mode=CacheMode.BYPASS
    )
    
    async with AsyncWebCrawler(config=browser_config) as crawler:
        url = "ADDRESS_OF_A_CHALLENGING_WEBSITE"
        
        result = await crawler.arun(
            url,
            config=run_config,
            magic=True,
        )
        
        print(f"Successfully crawled {url}")
        print(f"Content length: {len(result.markdown)}")
```

</details>


## ✨ Recent Updates   

- πŸ”’ **Enhanced SSL & Security**: New SSL certificate handling with custom paths and validation options for secure crawling
- πŸ” **Smart Content Filtering**: Advanced filtering system with regex support and efficient chunking strategies
- πŸ“¦ **Improved JSON Extraction**: Support for complex JSONPath, JSON-CSS, and Microdata extraction
- πŸ—οΈ **New Field Types**: Added `computed`, `conditional`, `aggregate`, and `template` field types
- ⚑ **Performance Boost**: Optimized caching, parallel processing, and memory management
- πŸ› **Better Error Handling**: Enhanced debugging capabilities with detailed error tracking
- πŸ” **Security Features**: Improved input validation and safe expression evaluation

Read the full details of this release in our [0.4.24 Release Notes](https://github.com/unclecode/crawl4ai/blob/main/CHANGELOG.md).

## πŸ“– Documentation & Roadmap 

> 🚨 **Documentation Update Alert**: We're undertaking a major documentation overhaul next week to reflect recent updates and improvements. Stay tuned for a more comprehensive and up-to-date guide!

For current documentation, including installation instructions, advanced features, and API reference, visit our [Documentation Website](https://crawl4ai.com/mkdocs/).

To check our development plans and upcoming features, visit our [Roadmap](https://github.com/unclecode/crawl4ai/blob/main/ROADMAP.md).

<details>
<summary>πŸ“ˆ <strong>Development TODOs</strong></summary>

- [x] 0. Graph Crawler: Smart website traversal using graph search algorithms for comprehensive nested page extraction
- [ ] 1. Question-Based Crawler: Natural language driven web discovery and content extraction
- [ ] 2. Knowledge-Optimal Crawler: Smart crawling that maximizes knowledge while minimizing data extraction
- [ ] 3. Agentic Crawler: Autonomous system for complex multi-step crawling operations
- [ ] 4. Automated Schema Generator: Convert natural language to extraction schemas
- [ ] 5. Domain-Specific Scrapers: Pre-configured extractors for common platforms (academic, e-commerce)
- [ ] 6. Web Embedding Index: Semantic search infrastructure for crawled content
- [ ] 7. Interactive Playground: Web UI for testing, comparing strategies with AI assistance
- [ ] 8. Performance Monitor: Real-time insights into crawler operations
- [ ] 9. Cloud Integration: One-click deployment solutions across cloud providers
- [ ] 10. Sponsorship Program: Structured support system with tiered benefits
- [ ] 11. Educational Content: "How to Crawl" video series and interactive tutorials

</details>

## 🀝 Contributing 

We welcome contributions from the open-source community. Check out our [contribution guidelines](https://github.com/unclecode/crawl4ai/blob/main/CONTRIBUTING.md) for more information.

## πŸ“„ License 

Crawl4AI is released under the [Apache 2.0 License](https://github.com/unclecode/crawl4ai/blob/main/LICENSE).

## πŸ“§ Contact 

For questions, suggestions, or feedback, feel free to reach out:

- GitHub: [unclecode](https://github.com/unclecode)
- Twitter: [@unclecode](https://twitter.com/unclecode)
- Website: [crawl4ai.com](https://crawl4ai.com)

Happy Crawling! πŸ•ΈοΈπŸš€

## πŸ—Ύ Mission

Our mission is to unlock the value of personal and enterprise data by transforming digital footprints into structured, tradeable assets. Crawl4AI empowers individuals and organizations with open-source tools to extract and structure data, fostering a shared data economy.  

We envision a future where AI is powered by real human knowledge, ensuring data creators directly benefit from their contributions. By democratizing data and enabling ethical sharing, we are laying the foundation for authentic AI advancement.

<details>
<summary>πŸ”‘ <strong>Key Opportunities</strong></summary>
 
- **Data Capitalization**: Transform digital footprints into measurable, valuable assets.  
- **Authentic AI Data**: Provide AI systems with real human insights.  
- **Shared Economy**: Create a fair data marketplace that benefits data creators.  

</details>

<details>
<summary>πŸš€ <strong>Development Pathway</strong></summary>

1. **Open-Source Tools**: Community-driven platforms for transparent data extraction.  
2. **Digital Asset Structuring**: Tools to organize and value digital knowledge.  
3. **Ethical Data Marketplace**: A secure, fair platform for exchanging structured data.  

For more details, see our [full mission statement](./MISSION.md).
</details>

## Star History

[![Star History Chart](https://api.star-history.com/svg?repos=unclecode/crawl4ai&type=Date)](https://star-history.com/#unclecode/crawl4ai&Date)