Spaces:
Running
Running
File size: 20,702 Bytes
03c0888 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import os
from pathlib import Path
import re
from typing import Dict, List, Tuple, Optional, Any
import json
from tqdm import tqdm
import time
import psutil
import numpy as np
from rank_bm25 import BM25Okapi
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from litellm import completion, batch_completion
from .async_logger import AsyncLogger
import litellm
import pickle
import hashlib # <--- ADDED for file-hash
from fnmatch import fnmatch
import glob
litellm.set_verbose = False
def _compute_file_hash(file_path: Path) -> str:
"""Compute MD5 hash for the file's entire content."""
hash_md5 = hashlib.md5()
with file_path.open("rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
class AsyncLLMTextManager:
def __init__(
self,
docs_dir: Path,
logger: Optional[AsyncLogger] = None,
max_concurrent_calls: int = 5,
batch_size: int = 3
) -> None:
self.docs_dir = docs_dir
self.logger = logger
self.max_concurrent_calls = max_concurrent_calls
self.batch_size = batch_size
self.bm25_index = None
self.document_map: Dict[str, Any] = {}
self.tokenized_facts: List[str] = []
self.bm25_index_file = self.docs_dir / "bm25_index.pkl"
async def _process_document_batch(self, doc_batch: List[Path]) -> None:
"""Process a batch of documents in parallel"""
contents = []
for file_path in doc_batch:
try:
with open(file_path, 'r', encoding='utf-8') as f:
contents.append(f.read())
except Exception as e:
self.logger.error(f"Error reading {file_path}: {str(e)}")
contents.append("") # Add empty content to maintain batch alignment
prompt = """Given a documentation file, generate a list of atomic facts where each fact:
1. Represents a single piece of knowledge
2. Contains variations in terminology for the same concept
3. References relevant code patterns if they exist
4. Is written in a way that would match natural language queries
Each fact should follow this format:
<main_concept>: <fact_statement> | <related_terms> | <code_reference>
Example Facts:
browser_config: Configure headless mode and browser type for AsyncWebCrawler | headless, browser_type, chromium, firefox | BrowserConfig(browser_type="chromium", headless=True)
redis_connection: Redis client connection requires host and port configuration | redis setup, redis client, connection params | Redis(host='localhost', port=6379, db=0)
pandas_filtering: Filter DataFrame rows using boolean conditions | dataframe filter, query, boolean indexing | df[df['column'] > 5]
Wrap your response in <index>...</index> tags.
"""
# Prepare messages for batch processing
messages_list = [
[
{"role": "user", "content": f"{prompt}\n\nGenerate index for this documentation:\n\n{content}"}
]
for content in contents if content
]
try:
responses = batch_completion(
model="anthropic/claude-3-5-sonnet-latest",
messages=messages_list,
logger_fn=None
)
# Process responses and save index files
for response, file_path in zip(responses, doc_batch):
try:
index_content_match = re.search(
r'<index>(.*?)</index>',
response.choices[0].message.content,
re.DOTALL
)
if not index_content_match:
self.logger.warning(f"No <index>...</index> content found for {file_path}")
continue
index_content = re.sub(
r"\n\s*\n", "\n", index_content_match.group(1)
).strip()
if index_content:
index_file = file_path.with_suffix('.q.md')
with open(index_file, 'w', encoding='utf-8') as f:
f.write(index_content)
self.logger.info(f"Created index file: {index_file}")
else:
self.logger.warning(f"No index content found in response for {file_path}")
except Exception as e:
self.logger.error(f"Error processing response for {file_path}: {str(e)}")
except Exception as e:
self.logger.error(f"Error in batch completion: {str(e)}")
def _validate_fact_line(self, line: str) -> Tuple[bool, Optional[str]]:
if "|" not in line:
return False, "Missing separator '|'"
parts = [p.strip() for p in line.split("|")]
if len(parts) != 3:
return False, f"Expected 3 parts, got {len(parts)}"
concept_part = parts[0]
if ":" not in concept_part:
return False, "Missing ':' in concept definition"
return True, None
def _load_or_create_token_cache(self, fact_file: Path) -> Dict:
"""
Load token cache from .q.tokens if present and matching file hash.
Otherwise return a new structure with updated file-hash.
"""
cache_file = fact_file.with_suffix(".q.tokens")
current_hash = _compute_file_hash(fact_file)
if cache_file.exists():
try:
with open(cache_file, "r") as f:
cache = json.load(f)
# If the hash matches, return it directly
if cache.get("content_hash") == current_hash:
return cache
# Otherwise, we signal that it's changed
self.logger.info(f"Hash changed for {fact_file}, reindex needed.")
except json.JSONDecodeError:
self.logger.warning(f"Corrupt token cache for {fact_file}, rebuilding.")
except Exception as e:
self.logger.warning(f"Error reading cache for {fact_file}: {str(e)}")
# Return a fresh cache
return {"facts": {}, "content_hash": current_hash}
def _save_token_cache(self, fact_file: Path, cache: Dict) -> None:
cache_file = fact_file.with_suffix(".q.tokens")
# Always ensure we're saving the correct file-hash
cache["content_hash"] = _compute_file_hash(fact_file)
with open(cache_file, "w") as f:
json.dump(cache, f)
def preprocess_text(self, text: str) -> List[str]:
parts = [x.strip() for x in text.split("|")] if "|" in text else [text]
# Remove : after the first word of parts[0]
parts[0] = re.sub(r"^(.*?):", r"\1", parts[0])
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words("english")) - {
"how", "what", "when", "where", "why", "which",
}
tokens = []
for part in parts:
if "(" in part and ")" in part:
code_tokens = re.findall(
r'[\w_]+(?=\()|[\w_]+(?==[\'"]{1}[\w_]+[\'"]{1})', part
)
tokens.extend(code_tokens)
words = word_tokenize(part.lower())
tokens.extend(
[
lemmatizer.lemmatize(token)
for token in words
if token not in stop_words
]
)
return tokens
def maybe_load_bm25_index(self, clear_cache=False) -> bool:
"""
Load existing BM25 index from disk, if present and clear_cache=False.
"""
if not clear_cache and os.path.exists(self.bm25_index_file):
self.logger.info("Loading existing BM25 index from disk.")
with open(self.bm25_index_file, "rb") as f:
data = pickle.load(f)
self.tokenized_facts = data["tokenized_facts"]
self.bm25_index = data["bm25_index"]
return True
return False
def build_search_index(self, clear_cache=False) -> None:
"""
Checks for new or modified .q.md files by comparing file-hash.
If none need reindexing and clear_cache is False, loads existing index if available.
Otherwise, reindexes only changed/new files and merges or creates a new index.
"""
# If clear_cache is True, we skip partial logic: rebuild everything from scratch
if clear_cache:
self.logger.info("Clearing cache and rebuilding full search index.")
if self.bm25_index_file.exists():
self.bm25_index_file.unlink()
process = psutil.Process()
self.logger.info("Checking which .q.md files need (re)indexing...")
# Gather all .q.md files
q_files = [self.docs_dir / f for f in os.listdir(self.docs_dir) if f.endswith(".q.md")]
# We'll store known (unchanged) facts in these lists
existing_facts: List[str] = []
existing_tokens: List[List[str]] = []
# Keep track of invalid lines for logging
invalid_lines = []
needSet = [] # files that must be (re)indexed
for qf in q_files:
token_cache_file = qf.with_suffix(".q.tokens")
# If no .q.tokens or clear_cache is True → definitely reindex
if clear_cache or not token_cache_file.exists():
needSet.append(qf)
continue
# Otherwise, load the existing cache and compare hash
cache = self._load_or_create_token_cache(qf)
# If the .q.tokens was out of date (i.e. changed hash), we reindex
if len(cache["facts"]) == 0 or cache.get("content_hash") != _compute_file_hash(qf):
needSet.append(qf)
else:
# File is unchanged → retrieve cached token data
for line, cache_data in cache["facts"].items():
existing_facts.append(line)
existing_tokens.append(cache_data["tokens"])
self.document_map[line] = qf # track the doc for that fact
if not needSet and not clear_cache:
# If no file needs reindexing, try loading existing index
if self.maybe_load_bm25_index(clear_cache=False):
self.logger.info("No new/changed .q.md files found. Using existing BM25 index.")
return
else:
# If there's no existing index, we must build a fresh index from the old caches
self.logger.info("No existing BM25 index found. Building from cached facts.")
if existing_facts:
self.logger.info(f"Building BM25 index with {len(existing_facts)} cached facts.")
self.bm25_index = BM25Okapi(existing_tokens)
self.tokenized_facts = existing_facts
with open(self.bm25_index_file, "wb") as f:
pickle.dump({
"bm25_index": self.bm25_index,
"tokenized_facts": self.tokenized_facts
}, f)
else:
self.logger.warning("No facts found at all. Index remains empty.")
return
# ----------------------------------------------------- /Users/unclecode/.crawl4ai/docs/14_proxy_security.q.q.tokens '/Users/unclecode/.crawl4ai/docs/14_proxy_security.q.md'
# If we reach here, we have new or changed .q.md files
# We'll parse them, reindex them, and then combine with existing_facts
# -----------------------------------------------------
self.logger.info(f"{len(needSet)} file(s) need reindexing. Parsing now...")
# 1) Parse the new or changed .q.md files
new_facts = []
new_tokens = []
with tqdm(total=len(needSet), desc="Indexing changed files") as file_pbar:
for file in needSet:
# We'll build up a fresh cache
fresh_cache = {"facts": {}, "content_hash": _compute_file_hash(file)}
try:
with open(file, "r", encoding="utf-8") as f_obj:
content = f_obj.read().strip()
lines = [l.strip() for l in content.split("\n") if l.strip()]
for line in lines:
is_valid, error = self._validate_fact_line(line)
if not is_valid:
invalid_lines.append((file, line, error))
continue
tokens = self.preprocess_text(line)
fresh_cache["facts"][line] = {
"tokens": tokens,
"added": time.time(),
}
new_facts.append(line)
new_tokens.append(tokens)
self.document_map[line] = file
# Save the new .q.tokens with updated hash
self._save_token_cache(file, fresh_cache)
mem_usage = process.memory_info().rss / 1024 / 1024
self.logger.debug(f"Memory usage after {file.name}: {mem_usage:.2f}MB")
except Exception as e:
self.logger.error(f"Error processing {file}: {str(e)}")
file_pbar.update(1)
if invalid_lines:
self.logger.warning(f"Found {len(invalid_lines)} invalid fact lines:")
for file, line, error in invalid_lines:
self.logger.warning(f"{file}: {error} in line: {line[:50]}...")
# 2) Merge newly tokenized facts with the existing ones
all_facts = existing_facts + new_facts
all_tokens = existing_tokens + new_tokens
# 3) Build BM25 index from combined facts
self.logger.info(f"Building BM25 index with {len(all_facts)} total facts (old + new).")
self.bm25_index = BM25Okapi(all_tokens)
self.tokenized_facts = all_facts
# 4) Save the updated BM25 index to disk
with open(self.bm25_index_file, "wb") as f:
pickle.dump({
"bm25_index": self.bm25_index,
"tokenized_facts": self.tokenized_facts
}, f)
final_mem = process.memory_info().rss / 1024 / 1024
self.logger.info(f"Search index updated. Final memory usage: {final_mem:.2f}MB")
async def generate_index_files(self, force_generate_facts: bool = False, clear_bm25_cache: bool = False) -> None:
"""
Generate index files for all documents in parallel batches
Args:
force_generate_facts (bool): If True, regenerate indexes even if they exist
clear_bm25_cache (bool): If True, clear existing BM25 index cache
"""
self.logger.info("Starting index generation for documentation files.")
md_files = [
self.docs_dir / f for f in os.listdir(self.docs_dir)
if f.endswith('.md') and not any(f.endswith(x) for x in ['.q.md', '.xs.md'])
]
# Filter out files that already have .q files unless force=True
if not force_generate_facts:
md_files = [
f for f in md_files
if not (self.docs_dir / f.name.replace('.md', '.q.md')).exists()
]
if not md_files:
self.logger.info("All index files exist. Use force=True to regenerate.")
else:
# Process documents in batches
for i in range(0, len(md_files), self.batch_size):
batch = md_files[i:i + self.batch_size]
self.logger.info(f"Processing batch {i//self.batch_size + 1}/{(len(md_files)//self.batch_size) + 1}")
await self._process_document_batch(batch)
self.logger.info("Index generation complete, building/updating search index.")
self.build_search_index(clear_cache=clear_bm25_cache)
def generate(self, sections: List[str], mode: str = "extended") -> str:
# Get all markdown files
all_files = glob.glob(str(self.docs_dir / "[0-9]*.md")) + \
glob.glob(str(self.docs_dir / "[0-9]*.xs.md"))
# Extract base names without extensions
base_docs = {Path(f).name.split('.')[0] for f in all_files
if not Path(f).name.endswith('.q.md')}
# Filter by sections if provided
if sections:
base_docs = {doc for doc in base_docs
if any(section.lower() in doc.lower() for section in sections)}
# Get file paths based on mode
files = []
for doc in sorted(base_docs, key=lambda x: int(x.split('_')[0]) if x.split('_')[0].isdigit() else 999999):
if mode == "condensed":
xs_file = self.docs_dir / f"{doc}.xs.md"
regular_file = self.docs_dir / f"{doc}.md"
files.append(str(xs_file if xs_file.exists() else regular_file))
else:
files.append(str(self.docs_dir / f"{doc}.md"))
# Read and format content
content = []
for file in files:
try:
with open(file, 'r', encoding='utf-8') as f:
fname = Path(file).name
content.append(f"{'#'*20}\n# {fname}\n{'#'*20}\n\n{f.read()}")
except Exception as e:
self.logger.error(f"Error reading {file}: {str(e)}")
return "\n\n---\n\n".join(content) if content else ""
def search(self, query: str, top_k: int = 5) -> str:
if not self.bm25_index:
return "No search index available. Call build_search_index() first."
query_tokens = self.preprocess_text(query)
doc_scores = self.bm25_index.get_scores(query_tokens)
mean_score = np.mean(doc_scores)
std_score = np.std(doc_scores)
score_threshold = mean_score + (0.25 * std_score)
file_data = self._aggregate_search_scores(
doc_scores=doc_scores,
score_threshold=score_threshold,
query_tokens=query_tokens,
)
ranked_files = sorted(
file_data.items(),
key=lambda x: (
x[1]["code_match_score"] * 2.0
+ x[1]["match_count"] * 1.5
+ x[1]["total_score"]
),
reverse=True,
)[:top_k]
results = []
for file, _ in ranked_files:
main_doc = str(file).replace(".q.md", ".md")
if os.path.exists(self.docs_dir / main_doc):
with open(self.docs_dir / main_doc, "r", encoding='utf-8') as f:
only_file_name = main_doc.split("/")[-1]
content = [
"#" * 20,
f"# {only_file_name}",
"#" * 20,
"",
f.read()
]
results.append("\n".join(content))
return "\n\n---\n\n".join(results)
def _aggregate_search_scores(
self, doc_scores: List[float], score_threshold: float, query_tokens: List[str]
) -> Dict:
file_data = {}
for idx, score in enumerate(doc_scores):
if score <= score_threshold:
continue
fact = self.tokenized_facts[idx]
file_path = self.document_map[fact]
if file_path not in file_data:
file_data[file_path] = {
"total_score": 0,
"match_count": 0,
"code_match_score": 0,
"matched_facts": [],
}
components = fact.split("|") if "|" in fact else [fact]
code_match_score = 0
if len(components) == 3:
code_ref = components[2].strip()
code_tokens = self.preprocess_text(code_ref)
code_match_score = len(set(query_tokens) & set(code_tokens)) / len(query_tokens)
file_data[file_path]["total_score"] += score
file_data[file_path]["match_count"] += 1
file_data[file_path]["code_match_score"] = max(
file_data[file_path]["code_match_score"], code_match_score
)
file_data[file_path]["matched_facts"].append(fact)
return file_data
def refresh_index(self) -> None:
"""Convenience method for a full rebuild."""
self.build_search_index(clear_cache=True)
|