File size: 20,702 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os
from pathlib import Path
import re
from typing import Dict, List, Tuple, Optional, Any
import json
from tqdm import tqdm
import time
import psutil
import numpy as np
from rank_bm25 import BM25Okapi
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from litellm import completion, batch_completion
from .async_logger import AsyncLogger
import litellm
import pickle
import hashlib  # <--- ADDED for file-hash
from fnmatch import fnmatch
import glob

litellm.set_verbose = False

def _compute_file_hash(file_path: Path) -> str:
    """Compute MD5 hash for the file's entire content."""
    hash_md5 = hashlib.md5()
    with file_path.open("rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

class AsyncLLMTextManager:
    def __init__(
        self,
        docs_dir: Path,
        logger: Optional[AsyncLogger] = None,
        max_concurrent_calls: int = 5,
        batch_size: int = 3
    ) -> None:
        self.docs_dir = docs_dir
        self.logger = logger
        self.max_concurrent_calls = max_concurrent_calls
        self.batch_size = batch_size
        self.bm25_index = None
        self.document_map: Dict[str, Any] = {}
        self.tokenized_facts: List[str] = []
        self.bm25_index_file = self.docs_dir / "bm25_index.pkl"

    async def _process_document_batch(self, doc_batch: List[Path]) -> None:
        """Process a batch of documents in parallel"""
        contents = []
        for file_path in doc_batch:
            try:
                with open(file_path, 'r', encoding='utf-8') as f:
                    contents.append(f.read())
            except Exception as e:
                self.logger.error(f"Error reading {file_path}: {str(e)}")
                contents.append("")  # Add empty content to maintain batch alignment

        prompt = """Given a documentation file, generate a list of atomic facts where each fact:
1. Represents a single piece of knowledge
2. Contains variations in terminology for the same concept
3. References relevant code patterns if they exist
4. Is written in a way that would match natural language queries

Each fact should follow this format:
<main_concept>: <fact_statement> | <related_terms> | <code_reference>

Example Facts:
browser_config: Configure headless mode and browser type for AsyncWebCrawler | headless, browser_type, chromium, firefox | BrowserConfig(browser_type="chromium", headless=True)
redis_connection: Redis client connection requires host and port configuration | redis setup, redis client, connection params | Redis(host='localhost', port=6379, db=0)
pandas_filtering: Filter DataFrame rows using boolean conditions | dataframe filter, query, boolean indexing | df[df['column'] > 5]

Wrap your response in <index>...</index> tags.
"""

        # Prepare messages for batch processing
        messages_list = [
            [
                {"role": "user", "content": f"{prompt}\n\nGenerate index for this documentation:\n\n{content}"}
            ]
            for content in contents if content
        ]

        try:
            responses = batch_completion(
                model="anthropic/claude-3-5-sonnet-latest",
                messages=messages_list,
                logger_fn=None
            )

            # Process responses and save index files
            for response, file_path in zip(responses, doc_batch):
                try:
                    index_content_match = re.search(
                        r'<index>(.*?)</index>',
                        response.choices[0].message.content,
                        re.DOTALL
                    )
                    if not index_content_match:
                        self.logger.warning(f"No <index>...</index> content found for {file_path}")
                        continue

                    index_content = re.sub(
                        r"\n\s*\n", "\n", index_content_match.group(1)
                    ).strip()
                    if index_content:
                        index_file = file_path.with_suffix('.q.md')
                        with open(index_file, 'w', encoding='utf-8') as f:
                            f.write(index_content)
                        self.logger.info(f"Created index file: {index_file}")
                    else:
                        self.logger.warning(f"No index content found in response for {file_path}")

                except Exception as e:
                    self.logger.error(f"Error processing response for {file_path}: {str(e)}")

        except Exception as e:
            self.logger.error(f"Error in batch completion: {str(e)}")

    def _validate_fact_line(self, line: str) -> Tuple[bool, Optional[str]]:
        if "|" not in line:
            return False, "Missing separator '|'"

        parts = [p.strip() for p in line.split("|")]
        if len(parts) != 3:
            return False, f"Expected 3 parts, got {len(parts)}"

        concept_part = parts[0]
        if ":" not in concept_part:
            return False, "Missing ':' in concept definition"

        return True, None

    def _load_or_create_token_cache(self, fact_file: Path) -> Dict:
        """
        Load token cache from .q.tokens if present and matching file hash.
        Otherwise return a new structure with updated file-hash.
        """
        cache_file = fact_file.with_suffix(".q.tokens")
        current_hash = _compute_file_hash(fact_file)

        if cache_file.exists():
            try:
                with open(cache_file, "r") as f:
                    cache = json.load(f)
                # If the hash matches, return it directly
                if cache.get("content_hash") == current_hash:
                    return cache
                # Otherwise, we signal that it's changed
                self.logger.info(f"Hash changed for {fact_file}, reindex needed.")
            except json.JSONDecodeError:
                self.logger.warning(f"Corrupt token cache for {fact_file}, rebuilding.")
            except Exception as e:
                self.logger.warning(f"Error reading cache for {fact_file}: {str(e)}")

        # Return a fresh cache
        return {"facts": {}, "content_hash": current_hash}

    def _save_token_cache(self, fact_file: Path, cache: Dict) -> None:
        cache_file = fact_file.with_suffix(".q.tokens")
        # Always ensure we're saving the correct file-hash
        cache["content_hash"] = _compute_file_hash(fact_file)
        with open(cache_file, "w") as f:
            json.dump(cache, f)

    def preprocess_text(self, text: str) -> List[str]:
        parts = [x.strip() for x in text.split("|")] if "|" in text else [text]
        # Remove : after the first word of parts[0]
        parts[0] = re.sub(r"^(.*?):", r"\1", parts[0])

        lemmatizer = WordNetLemmatizer()
        stop_words = set(stopwords.words("english")) - {
            "how", "what", "when", "where", "why", "which",
        }

        tokens = []
        for part in parts:
            if "(" in part and ")" in part:
                code_tokens = re.findall(
                    r'[\w_]+(?=\()|[\w_]+(?==[\'"]{1}[\w_]+[\'"]{1})', part
                )
                tokens.extend(code_tokens)

            words = word_tokenize(part.lower())
            tokens.extend(
                [
                    lemmatizer.lemmatize(token)
                    for token in words
                    if token not in stop_words
                ]
            )

        return tokens

    def maybe_load_bm25_index(self, clear_cache=False) -> bool:
        """
        Load existing BM25 index from disk, if present and clear_cache=False.
        """
        if not clear_cache and os.path.exists(self.bm25_index_file):
            self.logger.info("Loading existing BM25 index from disk.")
            with open(self.bm25_index_file, "rb") as f:
                data = pickle.load(f)
            self.tokenized_facts = data["tokenized_facts"]
            self.bm25_index = data["bm25_index"]
            return True
        return False

    def build_search_index(self, clear_cache=False) -> None:
        """
        Checks for new or modified .q.md files by comparing file-hash.
        If none need reindexing and clear_cache is False, loads existing index if available.
        Otherwise, reindexes only changed/new files and merges or creates a new index.
        """
        # If clear_cache is True, we skip partial logic: rebuild everything from scratch
        if clear_cache:
            self.logger.info("Clearing cache and rebuilding full search index.")
            if self.bm25_index_file.exists():
                self.bm25_index_file.unlink()

        process = psutil.Process()
        self.logger.info("Checking which .q.md files need (re)indexing...")

        # Gather all .q.md files
        q_files = [self.docs_dir / f for f in os.listdir(self.docs_dir) if f.endswith(".q.md")]

        # We'll store known (unchanged) facts in these lists
        existing_facts: List[str] = []
        existing_tokens: List[List[str]] = []

        # Keep track of invalid lines for logging
        invalid_lines = []
        needSet = []  # files that must be (re)indexed

        for qf in q_files:
            token_cache_file = qf.with_suffix(".q.tokens")

            # If no .q.tokens or clear_cache is True → definitely reindex
            if clear_cache or not token_cache_file.exists():
                needSet.append(qf)
                continue

            # Otherwise, load the existing cache and compare hash
            cache = self._load_or_create_token_cache(qf)
            # If the .q.tokens was out of date (i.e. changed hash), we reindex
            if len(cache["facts"]) == 0 or cache.get("content_hash") != _compute_file_hash(qf):
                needSet.append(qf)
            else:
                # File is unchanged → retrieve cached token data
                for line, cache_data in cache["facts"].items():
                    existing_facts.append(line)
                    existing_tokens.append(cache_data["tokens"])
                    self.document_map[line] = qf  # track the doc for that fact

        if not needSet and not clear_cache:
            # If no file needs reindexing, try loading existing index
            if self.maybe_load_bm25_index(clear_cache=False):
                self.logger.info("No new/changed .q.md files found. Using existing BM25 index.")
                return
            else:
                # If there's no existing index, we must build a fresh index from the old caches
                self.logger.info("No existing BM25 index found. Building from cached facts.")
                if existing_facts:
                    self.logger.info(f"Building BM25 index with {len(existing_facts)} cached facts.")
                    self.bm25_index = BM25Okapi(existing_tokens)
                    self.tokenized_facts = existing_facts
                    with open(self.bm25_index_file, "wb") as f:
                        pickle.dump({
                            "bm25_index": self.bm25_index,
                            "tokenized_facts": self.tokenized_facts
                        }, f)
                else:
                    self.logger.warning("No facts found at all. Index remains empty.")
                return

        # ----------------------------------------------------- /Users/unclecode/.crawl4ai/docs/14_proxy_security.q.q.tokens '/Users/unclecode/.crawl4ai/docs/14_proxy_security.q.md'
        # If we reach here, we have new or changed .q.md files
        # We'll parse them, reindex them, and then combine with existing_facts
        # -----------------------------------------------------

        self.logger.info(f"{len(needSet)} file(s) need reindexing. Parsing now...")

        # 1) Parse the new or changed .q.md files
        new_facts = []
        new_tokens = []
        with tqdm(total=len(needSet), desc="Indexing changed files") as file_pbar:
            for file in needSet:
                # We'll build up a fresh cache
                fresh_cache = {"facts": {}, "content_hash": _compute_file_hash(file)}
                try:
                    with open(file, "r", encoding="utf-8") as f_obj:
                        content = f_obj.read().strip()
                        lines = [l.strip() for l in content.split("\n") if l.strip()]

                    for line in lines:
                        is_valid, error = self._validate_fact_line(line)
                        if not is_valid:
                            invalid_lines.append((file, line, error))
                            continue

                        tokens = self.preprocess_text(line)
                        fresh_cache["facts"][line] = {
                            "tokens": tokens,
                            "added": time.time(),
                        }
                        new_facts.append(line)
                        new_tokens.append(tokens)
                        self.document_map[line] = file

                    # Save the new .q.tokens with updated hash
                    self._save_token_cache(file, fresh_cache)

                    mem_usage = process.memory_info().rss / 1024 / 1024
                    self.logger.debug(f"Memory usage after {file.name}: {mem_usage:.2f}MB")

                except Exception as e:
                    self.logger.error(f"Error processing {file}: {str(e)}")

                file_pbar.update(1)

        if invalid_lines:
            self.logger.warning(f"Found {len(invalid_lines)} invalid fact lines:")
            for file, line, error in invalid_lines:
                self.logger.warning(f"{file}: {error} in line: {line[:50]}...")

        # 2) Merge newly tokenized facts with the existing ones
        all_facts = existing_facts + new_facts
        all_tokens = existing_tokens + new_tokens

        # 3) Build BM25 index from combined facts
        self.logger.info(f"Building BM25 index with {len(all_facts)} total facts (old + new).")
        self.bm25_index = BM25Okapi(all_tokens)
        self.tokenized_facts = all_facts

        # 4) Save the updated BM25 index to disk
        with open(self.bm25_index_file, "wb") as f:
            pickle.dump({
                "bm25_index": self.bm25_index,
                "tokenized_facts": self.tokenized_facts
            }, f)

        final_mem = process.memory_info().rss / 1024 / 1024
        self.logger.info(f"Search index updated. Final memory usage: {final_mem:.2f}MB")

    async def generate_index_files(self, force_generate_facts: bool = False, clear_bm25_cache: bool = False) -> None:
        """
        Generate index files for all documents in parallel batches
        
        Args:
            force_generate_facts (bool): If True, regenerate indexes even if they exist
            clear_bm25_cache (bool): If True, clear existing BM25 index cache
        """
        self.logger.info("Starting index generation for documentation files.")
        
        md_files = [
            self.docs_dir / f for f in os.listdir(self.docs_dir) 
            if f.endswith('.md') and not any(f.endswith(x) for x in ['.q.md', '.xs.md'])
        ]

        # Filter out files that already have .q files unless force=True
        if not force_generate_facts:
            md_files = [
                f for f in md_files 
                if not (self.docs_dir / f.name.replace('.md', '.q.md')).exists()
            ]

        if not md_files:
            self.logger.info("All index files exist. Use force=True to regenerate.")
        else:
            # Process documents in batches
            for i in range(0, len(md_files), self.batch_size):
                batch = md_files[i:i + self.batch_size]
                self.logger.info(f"Processing batch {i//self.batch_size + 1}/{(len(md_files)//self.batch_size) + 1}")
                await self._process_document_batch(batch)

        self.logger.info("Index generation complete, building/updating search index.")
        self.build_search_index(clear_cache=clear_bm25_cache)

    def generate(self, sections: List[str], mode: str = "extended") -> str:
        # Get all markdown files
        all_files = glob.glob(str(self.docs_dir / "[0-9]*.md")) + \
                    glob.glob(str(self.docs_dir / "[0-9]*.xs.md"))
        
        # Extract base names without extensions
        base_docs = {Path(f).name.split('.')[0] for f in all_files 
                        if not Path(f).name.endswith('.q.md')}
        
        # Filter by sections if provided
        if sections:
            base_docs = {doc for doc in base_docs 
                        if any(section.lower() in doc.lower() for section in sections)}
        
        # Get file paths based on mode
        files = []
        for doc in sorted(base_docs, key=lambda x: int(x.split('_')[0]) if x.split('_')[0].isdigit() else 999999):
            if mode == "condensed":
                xs_file = self.docs_dir / f"{doc}.xs.md"
                regular_file = self.docs_dir / f"{doc}.md"
                files.append(str(xs_file if xs_file.exists() else regular_file))
            else:
                files.append(str(self.docs_dir / f"{doc}.md"))

        # Read and format content
        content = []
        for file in files:
            try:
                with open(file, 'r', encoding='utf-8') as f:
                    fname = Path(file).name
                    content.append(f"{'#'*20}\n# {fname}\n{'#'*20}\n\n{f.read()}")
            except Exception as e:
                self.logger.error(f"Error reading {file}: {str(e)}")

        return "\n\n---\n\n".join(content) if content else ""

    def search(self, query: str, top_k: int = 5) -> str:
        if not self.bm25_index:
            return "No search index available. Call build_search_index() first."

        query_tokens = self.preprocess_text(query)
        doc_scores = self.bm25_index.get_scores(query_tokens)

        mean_score = np.mean(doc_scores)
        std_score = np.std(doc_scores)
        score_threshold = mean_score + (0.25 * std_score)

        file_data = self._aggregate_search_scores(
            doc_scores=doc_scores,
            score_threshold=score_threshold,
            query_tokens=query_tokens,
        )

        ranked_files = sorted(
            file_data.items(),
            key=lambda x: (
                x[1]["code_match_score"] * 2.0
                + x[1]["match_count"] * 1.5
                + x[1]["total_score"]
            ),
            reverse=True,
        )[:top_k]

        results = []
        for file, _ in ranked_files:
            main_doc = str(file).replace(".q.md", ".md")
            if os.path.exists(self.docs_dir / main_doc):
                with open(self.docs_dir / main_doc, "r", encoding='utf-8') as f:
                    only_file_name = main_doc.split("/")[-1]
                    content = [
                    "#" * 20,
                    f"# {only_file_name}",
                    "#" * 20,
                    "",
                    f.read()
                    ]
                    results.append("\n".join(content))

        return "\n\n---\n\n".join(results)

    def _aggregate_search_scores(
        self, doc_scores: List[float], score_threshold: float, query_tokens: List[str]
    ) -> Dict:
        file_data = {}

        for idx, score in enumerate(doc_scores):
            if score <= score_threshold:
                continue

            fact = self.tokenized_facts[idx]
            file_path = self.document_map[fact]

            if file_path not in file_data:
                file_data[file_path] = {
                    "total_score": 0,
                    "match_count": 0,
                    "code_match_score": 0,
                    "matched_facts": [],
                }

            components = fact.split("|") if "|" in fact else [fact]

            code_match_score = 0
            if len(components) == 3:
                code_ref = components[2].strip()
                code_tokens = self.preprocess_text(code_ref)
                code_match_score = len(set(query_tokens) & set(code_tokens)) / len(query_tokens)

            file_data[file_path]["total_score"] += score
            file_data[file_path]["match_count"] += 1
            file_data[file_path]["code_match_score"] = max(
                file_data[file_path]["code_match_score"], code_match_score
            )
            file_data[file_path]["matched_facts"].append(fact)

        return file_data

    def refresh_index(self) -> None:
        """Convenience method for a full rebuild."""
        self.build_search_index(clear_cache=True)