File size: 34,231 Bytes
03c0888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0cba38e5",
   "metadata": {},
   "source": [
    "# Crawl4AI 🕷️🤖\n",
    "<a href=\"https://trendshift.io/repositories/11716\" target=\"_blank\"><img src=\"https://trendshift.io/api/badge/repositories/11716\" alt=\"unclecode%2Fcrawl4ai | Trendshift\" style=\"width: 250px; height: 55px;\" width=\"250\" height=\"55\"/></a>\n",
    "\n",
    "[![GitHub Stars](https://img.shields.io/github/stars/unclecode/crawl4ai?style=social)](https://github.com/unclecode/crawl4ai/stargazers)\n",
    "![PyPI - Downloads](https://img.shields.io/pypi/dm/Crawl4AI)\n",
    "[![GitHub Forks](https://img.shields.io/github/forks/unclecode/crawl4ai?style=social)](https://github.com/unclecode/crawl4ai/network/members)\n",
    "[![GitHub Issues](https://img.shields.io/github/issues/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/issues)\n",
    "[![GitHub Pull Requests](https://img.shields.io/github/issues-pr/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/pulls)\n",
    "[![License](https://img.shields.io/github/license/unclecode/crawl4ai)](https://github.com/unclecode/crawl4ai/blob/main/LICENSE)\n",
    "\n",
    "Crawl4AI simplifies asynchronous web crawling and data extraction, making it accessible for large language models (LLMs) and AI applications. 🆓🌐\n",
    "\n",
    "- GitHub Repository: [https://github.com/unclecode/crawl4ai](https://github.com/unclecode/crawl4ai)\n",
    "- Twitter: [@unclecode](https://twitter.com/unclecode)\n",
    "- Website: [https://crawl4ai.com](https://crawl4ai.com)\n",
    "\n",
    "## 🌟 Meet the Crawl4AI Assistant: Your Copilot for Crawling\n",
    "Use the [Crawl4AI GPT Assistant](https://tinyurl.com/crawl4ai-gpt) as your AI-powered copilot! With this assistant, you can:\n",
    "- 🧑‍💻 Generate code for complex crawling and extraction tasks\n",
    "- 💡 Get tailored support and examples\n",
    "- 📘 Learn Crawl4AI faster with step-by-step guidance"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "41de6458",
   "metadata": {},
   "source": [
    "### **Quickstart with Crawl4AI**"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1380e951",
   "metadata": {},
   "source": [
    "#### 1. **Installation**\n",
    "Install Crawl4AI and necessary dependencies:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "05fecfad",
   "metadata": {},
   "outputs": [],
   "source": [
    "# %%capture\n",
    "!pip install crawl4ai\n",
    "!pip install nest_asyncio\n",
    "!playwright install  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "2c2a74c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import asyncio\n",
    "import nest_asyncio\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f3c558d7",
   "metadata": {},
   "source": [
    "#### 2. **Basic Setup and Simple Crawl**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "003376f3",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[LOG] 🚀 Crawling done for https://www.nbcnews.com/business, success: True, time taken: 1.49 seconds\n",
      "[LOG] 🚀 Content extracted for https://www.nbcnews.com/business, success: True, time taken: 0.10 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://www.nbcnews.com/business, Strategy: AsyncWebCrawler\n",
      "[LOG] 🚀 Extraction done for https://www.nbcnews.com/business, time taken: 0.10 seconds.\n",
      "IE 11 is not supported. For an optimal experience visit our site on another browser.\n",
      "\n",
      "[Morning Rundown: Trump and Harris' vastly different closing pitches, why Kim Jong Un is helping Russia, and an ancient city is discovered by accident](https://www.nbcnews.com/news/harris-speech-ellipse-ancient-mayan-city-morning-rundown-rcna177973)[](https://www.nbcnews.com/news/harris-speech-ellipse-ancient-mayan-city-morning-rundown-rcna177973)\n",
      "\n",
      "Skip to Content\n",
      "\n",
      "[NBC News Logo](https://www.nbcnews.com)\n",
      "\n",
      "Spon\n"
     ]
    }
   ],
   "source": [
    "import asyncio\n",
    "from crawl4ai import AsyncWebCrawler\n",
    "\n",
    "async def simple_crawl():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://www.nbcnews.com/business\",\n",
    "            bypass_cache=True # By default this is False, meaning the cache will be used\n",
    "        )\n",
    "        print(result.markdown[:500])  # Print the first 500 characters\n",
    "        \n",
    "asyncio.run(simple_crawl())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da9b4d50",
   "metadata": {},
   "source": [
    "#### 3. **Dynamic Content Handling**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "5bb8c1e4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[LOG] 🌤️  Warming up the AsyncWebCrawler\n",
      "[LOG] 🌞 AsyncWebCrawler is ready to crawl\n",
      "[LOG] 🕸️ Crawling https://www.nbcnews.com/business using AsyncPlaywrightCrawlerStrategy...\n",
      "[LOG] ✅ Crawled https://www.nbcnews.com/business successfully!\n",
      "[LOG] 🚀 Crawling done for https://www.nbcnews.com/business, success: True, time taken: 4.52 seconds\n",
      "[LOG] 🚀 Content extracted for https://www.nbcnews.com/business, success: True, time taken: 0.15 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://www.nbcnews.com/business, Strategy: AsyncWebCrawler\n",
      "[LOG] 🚀 Extraction done for https://www.nbcnews.com/business, time taken: 0.15 seconds.\n",
      "IE 11 is not supported. For an optimal experience visit our site on another browser.\n",
      "\n",
      "[Morning Rundown: Trump and Harris' vastly different closing pitches, why Kim Jong Un is helping Russia, and an ancient city is discovered by accident](https://www.nbcnews.com/news/harris-speech-ellipse-ancient-mayan-city-morning-rundown-rcna177973)[](https://www.nbcnews.com/news/harris-speech-ellipse-ancient-mayan-city-morning-rundown-rcna177973)\n",
      "\n",
      "Skip to Content\n",
      "\n",
      "[NBC News Logo](https://www.nbcnews.com)\n",
      "\n",
      "Spon\n"
     ]
    }
   ],
   "source": [
    "async def crawl_dynamic_content():\n",
    "    # You can use wait_for to wait for a condition to be met before returning the result\n",
    "    # wait_for = \"\"\"() => {\n",
    "    #     return Array.from(document.querySelectorAll('article.tease-card')).length > 10;\n",
    "    # }\"\"\"\n",
    "\n",
    "    # wait_for can be also just a css selector\n",
    "    # wait_for = \"article.tease-card:nth-child(10)\"\n",
    "\n",
    "    async with AsyncWebCrawler(verbose=True) as crawler:\n",
    "        js_code = [\n",
    "            \"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();\"\n",
    "        ]\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://www.nbcnews.com/business\",\n",
    "            js_code=js_code,\n",
    "            # wait_for=wait_for,\n",
    "            bypass_cache=True,\n",
    "        )\n",
    "        print(result.markdown[:500])  # Print first 500 characters\n",
    "\n",
    "asyncio.run(crawl_dynamic_content())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "86febd8d",
   "metadata": {},
   "source": [
    "#### 4. **Content Cleaning and Fit Markdown**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e8ab01f",
   "metadata": {},
   "outputs": [],
   "source": [
    "async def clean_content():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://janineintheworld.com/places-to-visit-in-central-mexico\",\n",
    "            excluded_tags=['nav', 'footer', 'aside'],\n",
    "            remove_overlay_elements=True,\n",
    "            word_count_threshold=10,\n",
    "            bypass_cache=True\n",
    "        )\n",
    "        full_markdown_length = len(result.markdown)\n",
    "        fit_markdown_length = len(result.fit_markdown)\n",
    "        print(f\"Full Markdown Length: {full_markdown_length}\")\n",
    "        print(f\"Fit Markdown Length: {fit_markdown_length}\")\n",
    "        print(result.fit_markdown[:1000])\n",
    "        \n",
    "\n",
    "asyncio.run(clean_content())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "55715146",
   "metadata": {},
   "source": [
    "#### 5. **Link Analysis and Smart Filtering**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "2ae47c69",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[LOG] 🚀 Crawling done for https://www.nbcnews.com/business, success: True, time taken: 0.93 seconds\n",
      "[LOG] 🚀 Content extracted for https://www.nbcnews.com/business, success: True, time taken: 0.11 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://www.nbcnews.com/business, Strategy: AsyncWebCrawler\n",
      "[LOG] 🚀 Extraction done for https://www.nbcnews.com/business, time taken: 0.11 seconds.\n",
      "Found 107 internal links\n",
      "Found 58 external links\n",
      "Href: https://www.nbcnews.com/news/harris-speech-ellipse-ancient-mayan-city-morning-rundown-rcna177973\n",
      "Text: Morning Rundown: Trump and Harris' vastly different closing pitches, why Kim Jong Un is helping Russia, and an ancient city is discovered by accident\n",
      "\n",
      "Href: https://www.nbcnews.com\n",
      "Text: NBC News Logo\n",
      "\n",
      "Href: https://www.nbcnews.com/politics/2024-election/live-blog/kamala-harris-donald-trump-rally-election-live-updates-rcna177529\n",
      "Text: 2024 Election\n",
      "\n",
      "Href: https://www.nbcnews.com/politics\n",
      "Text: Politics\n",
      "\n",
      "Href: https://www.nbcnews.com/us-news\n",
      "Text: U.S. News\n",
      "\n"
     ]
    }
   ],
   "source": [
    "\n",
    "async def link_analysis():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://www.nbcnews.com/business\",\n",
    "            bypass_cache=True,\n",
    "            exclude_external_links=True,\n",
    "            exclude_social_media_links=True,\n",
    "            # exclude_domains=[\"facebook.com\", \"twitter.com\"]\n",
    "        )\n",
    "        print(f\"Found {len(result.links['internal'])} internal links\")\n",
    "        print(f\"Found {len(result.links['external'])} external links\")\n",
    "\n",
    "        for link in result.links['internal'][:5]:\n",
    "            print(f\"Href: {link['href']}\\nText: {link['text']}\\n\")\n",
    "                \n",
    "\n",
    "asyncio.run(link_analysis())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "80cceef3",
   "metadata": {},
   "source": [
    "#### 6. **Media Handling**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "1fed7f99",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[LOG] 🚀 Crawling done for https://www.nbcnews.com/business, success: True, time taken: 1.42 seconds\n",
      "[LOG] 🚀 Content extracted for https://www.nbcnews.com/business, success: True, time taken: 0.11 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://www.nbcnews.com/business, Strategy: AsyncWebCrawler\n",
      "[LOG] 🚀 Extraction done for https://www.nbcnews.com/business, time taken: 0.12 seconds.\n",
      "Image URL: https://media-cldnry.s-nbcnews.com/image/upload/t_focal-762x508,f_auto,q_auto:best/rockcms/2024-10/241023-NM-Chilccare-jg-27b982.jpg, Alt: , Score: 4\n",
      "Image URL: https://media-cldnry.s-nbcnews.com/image/upload/t_focal-80x80,f_auto,q_auto:best/rockcms/2024-10/241030-china-ev-electric-mb-0746-cae05c.jpg, Alt: Volkswagen Workshop in Hefei, Score: 5\n",
      "Image URL: https://media-cldnry.s-nbcnews.com/image/upload/t_focal-80x80,f_auto,q_auto:best/rockcms/2024-10/241029-nyc-subway-sandwich-2021-ac-922p-a92374.jpg, Alt: A sub is prepared at a Subway restaurant in Manhattan, New York City, Score: 5\n",
      "Image URL: https://media-cldnry.s-nbcnews.com/image/upload/t_focal-80x80,f_auto,q_auto:best/rockcms/2024-10/241029-suv-gravity-ch-1618-752415.jpg, Alt: The Lucid Gravity car., Score: 5\n",
      "Image URL: https://media-cldnry.s-nbcnews.com/image/upload/t_focal-80x80,f_auto,q_auto:best/rockcms/2024-10/241029-dearborn-michigan-f-150-ford-ranger-trucks-assembly-line-ac-426p-614f0b.jpg, Alt: Ford Introduces new F-150 And Ranger Trucks At Their Dearborn Plant, Score: 5\n"
     ]
    }
   ],
   "source": [
    "async def media_handling():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://www.nbcnews.com/business\", \n",
    "            bypass_cache=True,\n",
    "            exclude_external_images=False,\n",
    "            screenshot=True\n",
    "        )\n",
    "        for img in result.media['images'][:5]:\n",
    "            print(f\"Image URL: {img['src']}, Alt: {img['alt']}, Score: {img['score']}\")\n",
    "        \n",
    "asyncio.run(media_handling())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9290499a",
   "metadata": {},
   "source": [
    "#### 7. **Using Hooks for Custom Workflow**"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d069c2b",
   "metadata": {},
   "source": [
    "Hooks in Crawl4AI allow you to run custom logic at specific stages of the crawling process. This can be invaluable for scenarios like setting custom headers, logging activities, or processing content before it is returned. Below is an example of a basic workflow using a hook, followed by a complete list of available hooks and explanations on their usage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "bc4d2fc8",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[Hook] Preparing to navigate...\n",
      "[LOG] 🚀 Crawling done for https://crawl4ai.com, success: True, time taken: 3.49 seconds\n",
      "[LOG] 🚀 Content extracted for https://crawl4ai.com, success: True, time taken: 0.03 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://crawl4ai.com, Strategy: AsyncWebCrawler\n",
      "[LOG] 🚀 Extraction done for https://crawl4ai.com, time taken: 0.03 seconds.\n",
      "[Crawl4AI Documentation](https://docs.crawl4ai.com/)\n",
      "\n",
      "  * [ Home ](.)\n",
      "  * [ Installation ](basic/installation/)\n",
      "  * [ Quick Start ](basic/quickstart/)\n",
      "  * [ Search ](#)\n",
      "\n",
      "\n",
      "\n",
      "  * Home\n",
      "  * [Installation](basic/installation/)\n",
      "  * [Quick Start](basic/quickstart/)\n",
      "  * Basic\n",
      "    * [Simple Crawling](basic/simple-crawling/)\n",
      "    * [Output Formats](basic/output-formats/)\n",
      "    * [Browser Configuration](basic/browser-config/)\n",
      "    * [Page Interaction](basic/page-interaction/)\n",
      "    * [Content Selection](basic/con\n"
     ]
    }
   ],
   "source": [
    "async def custom_hook_workflow():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        # Set a 'before_goto' hook to run custom code just before navigation\n",
    "        crawler.crawler_strategy.set_hook(\"before_goto\", lambda page: print(\"[Hook] Preparing to navigate...\"))\n",
    "        \n",
    "        # Perform the crawl operation\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://crawl4ai.com\",\n",
    "            bypass_cache=True\n",
    "        )\n",
    "        print(result.markdown[:500])  # Display the first 500 characters\n",
    "\n",
    "asyncio.run(custom_hook_workflow())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ff45e21",
   "metadata": {},
   "source": [
    "List of available hooks and examples for each stage of the crawling process:\n",
    "\n",
    "- **on_browser_created**\n",
    "    ```python\n",
    "    async def on_browser_created_hook(browser):\n",
    "        print(\"[Hook] Browser created\")\n",
    "    ```\n",
    "\n",
    "- **before_goto**\n",
    "    ```python\n",
    "    async def before_goto_hook(page):\n",
    "        await page.set_extra_http_headers({\"X-Test-Header\": \"test\"})\n",
    "    ```\n",
    "\n",
    "- **after_goto**\n",
    "    ```python\n",
    "    async def after_goto_hook(page):\n",
    "        print(f\"[Hook] Navigated to {page.url}\")\n",
    "    ```\n",
    "\n",
    "- **on_execution_started**\n",
    "    ```python\n",
    "    async def on_execution_started_hook(page):\n",
    "        print(\"[Hook] JavaScript execution started\")\n",
    "    ```\n",
    "\n",
    "- **before_return_html**\n",
    "    ```python\n",
    "    async def before_return_html_hook(page, html):\n",
    "        print(f\"[Hook] HTML length: {len(html)}\")\n",
    "    ```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d56ebb1",
   "metadata": {},
   "source": [
    "#### 8. **Session-Based Crawling**\n",
    "\n",
    "When to Use Session-Based Crawling: \n",
    "Session-based crawling is especially beneficial when navigating through multi-page content where each page load needs to maintain the same session context. For instance, in cases where a “Next Page” button must be clicked to load subsequent data, the new data often replaces the previous content. Here, session-based crawling keeps the browser state intact across each interaction, allowing for sequential actions within the same session.\n",
    "\n",
    "Example: Multi-Page Navigation Using JavaScript\n",
    "In this example, we’ll navigate through multiple pages by clicking a \"Next Page\" button. After each page load, we extract the new content and repeat the process."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e7bfebae",
   "metadata": {},
   "outputs": [],
   "source": [
    "async def multi_page_session_crawl():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        session_id = \"page_navigation_session\"\n",
    "        url = \"https://example.com/paged-content\"\n",
    "\n",
    "        for page_number in range(1, 4):\n",
    "            result = await crawler.arun(\n",
    "                url=url,\n",
    "                session_id=session_id,\n",
    "                js_code=\"document.querySelector('.next-page-button').click();\" if page_number > 1 else None,\n",
    "                css_selector=\".content-section\",\n",
    "                bypass_cache=True\n",
    "            )\n",
    "            print(f\"Page {page_number} Content:\")\n",
    "            print(result.markdown[:500])  # Print first 500 characters\n",
    "\n",
    "# asyncio.run(multi_page_session_crawl())"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ad32a778",
   "metadata": {},
   "source": [
    "#### 9. **Using Extraction Strategies**\n",
    "\n",
    "**LLM Extraction**\n",
    "\n",
    "This example demonstrates how to use language model-based extraction to retrieve structured data from a pricing page on OpenAI’s site."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "3011a7c5",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "--- Extracting Structured Data with openai/gpt-4o-mini ---\n",
      "[LOG] 🌤️  Warming up the AsyncWebCrawler\n",
      "[LOG] 🌞 AsyncWebCrawler is ready to crawl\n",
      "[LOG] 🕸️ Crawling https://openai.com/api/pricing/ using AsyncPlaywrightCrawlerStrategy...\n",
      "[LOG] ✅ Crawled https://openai.com/api/pricing/ successfully!\n",
      "[LOG] 🚀 Crawling done for https://openai.com/api/pricing/, success: True, time taken: 1.29 seconds\n",
      "[LOG] 🚀 Content extracted for https://openai.com/api/pricing/, success: True, time taken: 0.13 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://openai.com/api/pricing/, Strategy: AsyncWebCrawler\n",
      "[LOG] Call LLM for https://openai.com/api/pricing/ - block index: 0\n",
      "[LOG] Extracted 26 blocks from URL: https://openai.com/api/pricing/ block index: 0\n",
      "[LOG] 🚀 Extraction done for https://openai.com/api/pricing/, time taken: 15.12 seconds.\n",
      "[{'model_name': 'gpt-4o', 'input_fee': '$2.50 / 1M input tokens', 'output_fee': '$10.00 / 1M output tokens', 'error': False}, {'model_name': 'gpt-4o-2024-08-06', 'input_fee': '$2.50 / 1M input tokens', 'output_fee': '$10.00 / 1M output tokens', 'error': False}, {'model_name': 'gpt-4o-audio-preview', 'input_fee': '$2.50 / 1M input tokens', 'output_fee': '$10.00 / 1M output tokens', 'error': False}, {'model_name': 'gpt-4o-audio-preview-2024-10-01', 'input_fee': '$2.50 / 1M input tokens', 'output_fee': '$10.00 / 1M output tokens', 'error': False}, {'model_name': 'gpt-4o-2024-05-13', 'input_fee': '$5.00 / 1M input tokens', 'output_fee': '$15.00 / 1M output tokens', 'error': False}]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/unclecode/devs/crawl4ai/venv/lib/python3.10/site-packages/pydantic/main.py:347: UserWarning: Pydantic serializer warnings:\n",
      "  Expected `PromptTokensDetails` but got `dict` - serialized value may not be as expected\n",
      "  return self.__pydantic_serializer__.to_python(\n"
     ]
    }
   ],
   "source": [
    "from crawl4ai.extraction_strategy import LLMExtractionStrategy\n",
    "from pydantic import BaseModel, Field\n",
    "import os, json\n",
    "\n",
    "class OpenAIModelFee(BaseModel):\n",
    "    model_name: str = Field(..., description=\"Name of the OpenAI model.\")\n",
    "    input_fee: str = Field(..., description=\"Fee for input token for the OpenAI model.\")\n",
    "    output_fee: str = Field(\n",
    "        ..., description=\"Fee for output token for the OpenAI model.\"\n",
    "    )\n",
    "\n",
    "async def extract_structured_data_using_llm(provider: str, api_token: str = None, extra_headers: dict = None):\n",
    "    print(f\"\\n--- Extracting Structured Data with {provider} ---\")\n",
    "    \n",
    "    # Skip if API token is missing (for providers that require it)\n",
    "    if api_token is None and provider != \"ollama\":\n",
    "        print(f\"API token is required for {provider}. Skipping this example.\")\n",
    "        return\n",
    "\n",
    "    extra_args = {\"extra_headers\": extra_headers} if extra_headers else {}\n",
    "\n",
    "    async with AsyncWebCrawler(verbose=True) as crawler:\n",
    "        result = await crawler.arun(\n",
    "            url=\"https://openai.com/api/pricing/\",\n",
    "            word_count_threshold=1,\n",
    "            extraction_strategy=LLMExtractionStrategy(\n",
    "                provider=provider,\n",
    "                api_token=api_token,\n",
    "                schema=OpenAIModelFee.schema(),\n",
    "                extraction_type=\"schema\",\n",
    "                instruction=\"\"\"Extract all model names along with fees for input and output tokens.\"\n",
    "                \"{model_name: 'GPT-4', input_fee: 'US$10.00 / 1M tokens', output_fee: 'US$30.00 / 1M tokens'}.\"\"\",\n",
    "                **extra_args\n",
    "            ),\n",
    "            bypass_cache=True,\n",
    "        )\n",
    "        print(json.loads(result.extracted_content)[:5])\n",
    "\n",
    "# Usage:\n",
    "await extract_structured_data_using_llm(\"openai/gpt-4o-mini\", os.getenv(\"OPENAI_API_KEY\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6532db9d",
   "metadata": {},
   "source": [
    "**Cosine Similarity Strategy**\n",
    "\n",
    "This strategy uses semantic clustering to extract relevant content based on contextual similarity, which is helpful when extracting related sections from a single topic."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "ec079108",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[LOG] Loading Extraction Model for mps device.\n",
      "[LOG] Loading Multilabel Classifier for mps device.\n",
      "[LOG] Model loaded sentence-transformers/all-MiniLM-L6-v2, models/reuters, took 5.193778038024902 seconds\n",
      "[LOG] 🚀 Crawling done for https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156, success: True, time taken: 1.37 seconds\n",
      "[LOG] 🚀 Content extracted for https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156, success: True, time taken: 0.07 seconds\n",
      "[LOG] 🔥 Extracting semantic blocks for https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156, Strategy: AsyncWebCrawler\n",
      "[LOG] 🚀 Assign tags using mps\n",
      "[LOG] 🚀 Categorization done in 0.55 seconds\n",
      "[LOG] 🚀 Extraction done for https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156, time taken: 6.63 seconds.\n",
      "[{'index': 1, 'tags': ['news_&_social_concern'], 'content': \"McDonald's 2024 combo: Inflation, a health crisis and a side of politics # McDonald's 2024 combo: Inflation, a health crisis and a side of politics\"}, {'index': 2, 'tags': ['business_&_entrepreneurs', 'news_&_social_concern'], 'content': 'Like many major brands, McDonald’s raked in big profits as the economy reopened from the pandemic. In October 2022, [executives were boasting](https://www.cnbc.com/2022/10/27/mcdonalds-mcd-earnings-q3-2022.html) that they’d been raising prices without crimping traffic, even as competitors began to warn that some customers were closing their wallets after inflation peaked above 9% that summer. Still, the U.S. had repeatedly dodged a much-forecast recession, and [Americans kept spending on nonessentials](https://www.nbcnews.com/business/economy/year-peak-inflation-travel-leisure-mostly-cost-less-rcna92760) like travel and dining out — despite regularly relaying to pollsters their dismal views of an otherwise solid economy. Even so, 64% of consumers said they noticed price increases at quick-service restaurants in September, more than at any other type of venue, according to a survey by Datassential, a food and beverage market researcher. Politicians are still drawing attention to fast-food costs, too, as the election season barrels toward a tumultuous finish. A group of Democratic senators this month [denounced McDonald’s for menu prices](https://www.nbcnews.com/news/us-news/democratic-senators-slam-mcdonalds-menu-price-hikes-rcna176380) that they said outstripped inflation, accusing the company of looking to profit “at the expense of people’s ability to put food on the table.” The financial results come toward the end of a humbling year for the nearly $213 billion restaurant chain, whose shares remained steady on the heels of its latest earnings. Kempczinski [sought to reassure investors](https://www.cnbc.com/2024/10/29/mcdonalds-e-coli-outbreak-ceo-comments.html) that [the E. coli outbreak](https://www.nbcnews.com/health/health-news/illnesses-linked-mcdonalds-e-coli-outbreak-rise-75-cdc-says-rcna177260), linked to Quarter Pounder burgers, was under control after the health crisis temporarily dented the company’s stock and caused U.S. foot traffic to drop nearly 10% in the days afterward, according to estimates by Gordon Haskett financial researchers. The fast-food giant [reported Tuesday](https://www.cnbc.com/2024/10/29/mcdonalds-mcd-earnings-q3-2024.html) that it had reversed its recent U.S. sales drop, posting a 0.3% uptick in the third quarter. Foot traffic was still down slightly, but the company said its summer of discounts was paying off. But by early this year, [photos of eye-watering menu prices](https://x.com/sam_learner/status/1681367351143301129) at some McDonald’s locations — including an $18 Big Mac combo at a Connecticut rest stop from July 2023 — went viral, bringing diners’ long-simmering frustrations to a boiling point that the company couldn’t ignore. On an earnings call in April, Kempczinski acknowledged that foot traffic had fallen. “We will stay laser-focused on providing an unparalleled experience with simple, everyday value and affordability that our consumers can count on as they continue to be mindful about their spending,” CEO Chris Kempczinski [said in a statement](https://www.prnewswire.com/news-releases/mcdonalds-reports-third-quarter-2024-results-302289216.html?Fds-Load-Behavior=force-external) alongside the earnings report.'}, {'index': 3, 'tags': ['food_&_dining', 'news_&_social_concern'], 'content': '![mcdonalds drive-thru economy fast food](https://media-cldnry.s-nbcnews.com/image/upload/t_fit-760w,f_auto,q_auto:best/rockcms/2024-10/241024-los-angeles-mcdonalds-drive-thru-ac-1059p-cfc311.jpg)McDonald’s has had some success leaning into discounts this year. Eric Thayer / Bloomberg via Getty Images file'}, {'index': 4, 'tags': ['business_&_entrepreneurs', 'food_&_dining', 'news_&_social_concern'], 'content': 'McDonald’s has faced a customer revolt over pricey Big Macs, an unsolicited cameo in election-season crossfire, and now an E. coli outbreak — just as the company had been luring customers back with more affordable burgers. Despite a difficult quarter, McDonald’s looks resilient in the face of various pressures, analysts say — something the company shares with U.S. consumers overall. “Consumers continue to be even more discriminating with every dollar that they spend,” he said at the time. Going forward, McDonald’s would be “laser-focused” on affordability.  “McDonald’s has also done a good job of embedding the brand in popular culture to enhance its relevance and meaning around fun and family. But it also needed to modify the product line to meet the expectations of a consumer who is on a tight budget,” he said. “The thing that McDonald’s had struggled with, and why I think we’re seeing kind of an inflection point, is a value proposition,” Senatore said. “McDonald’s menu price increases had run ahead of a lot of its restaurant peers. … Consumers are savvy enough to know that.” For many consumers, the fast-food giant’s menus serve as an informal gauge of the economy overall, said Sara Senatore, a Bank of America analyst covering restaurants. “The spotlight is always on McDonald’s because it’s so big” and something of a “bellwether,” she said. McDonald’s didn’t respond to requests for comment.'}, {'index': 5, 'tags': ['business_&_entrepreneurs', 'food_&_dining'], 'content': 'Mickey D’s’ $5 meal deal, which it launched in late June to jumpstart slumping sales, has given the company an appealing price point to advertise nationwide, Senatore said, speculating that it could open the door to a new permanent value offering. But before that promotion rolled out, the company’s reputation as a low-cost option had taken a bruising hit.'}]\n"
     ]
    }
   ],
   "source": [
    "from crawl4ai.extraction_strategy import CosineStrategy\n",
    "\n",
    "async def cosine_similarity_extraction():\n",
    "    async with AsyncWebCrawler() as crawler:\n",
    "        strategy = CosineStrategy(\n",
    "            word_count_threshold=10,\n",
    "            max_dist=0.2, # Maximum distance between two words\n",
    "            linkage_method=\"ward\", # Linkage method for hierarchical clustering (ward, complete, average, single)\n",
    "            top_k=3, # Number of top keywords to extract\n",
    "            sim_threshold=0.3, # Similarity threshold for clustering\n",
    "            semantic_filter=\"McDonald's economic impact, American consumer trends\", # Keywords to filter the content semantically using embeddings\n",
    "            verbose=True\n",
    "        )\n",
    "        \n",
    "        result = await crawler.arun(\n",
    "            url=\"https://www.nbcnews.com/business/consumer/how-mcdonalds-e-coli-crisis-inflation-politics-reflect-american-story-rcna177156\",\n",
    "            extraction_strategy=strategy\n",
    "        )\n",
    "        print(json.loads(result.extracted_content)[:5])\n",
    "\n",
    "asyncio.run(cosine_similarity_extraction())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff423629",
   "metadata": {},
   "source": [
    "#### 10. **Conclusion and Next Steps**\n",
    "\n",
    "You’ve explored core features of Crawl4AI, including dynamic content handling, link analysis, and advanced extraction strategies. Visit our documentation for further details on using Crawl4AI’s extensive features.\n",
    "\n",
    "- GitHub Repository: [https://github.com/unclecode/crawl4ai](https://github.com/unclecode/crawl4ai)\n",
    "- Twitter: [@unclecode](https://twitter.com/unclecode)\n",
    "- Website: [https://crawl4ai.com](https://crawl4ai.com)\n",
    "\n",
    "Happy Crawling with Crawl4AI! 🕷️🤖\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d34c1d35",
   "metadata": {},
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}