|
""" |
|
Example demonstrating different extraction strategies with various input formats. |
|
This example shows how to: |
|
1. Use different input formats (markdown, HTML, fit_markdown) |
|
2. Work with JSON-based extractors (CSS and XPath) |
|
3. Use LLM-based extraction with different input formats |
|
4. Configure browser and crawler settings properly |
|
""" |
|
|
|
import asyncio |
|
import os |
|
from typing import Dict, Any |
|
|
|
from crawl4ai import AsyncWebCrawler, BrowserConfig, CrawlerRunConfig, CacheMode |
|
from crawl4ai.extraction_strategy import ( |
|
LLMExtractionStrategy, |
|
JsonCssExtractionStrategy, |
|
JsonXPathExtractionStrategy |
|
) |
|
from crawl4ai.chunking_strategy import RegexChunking, IdentityChunking |
|
from crawl4ai.content_filter_strategy import PruningContentFilter |
|
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator |
|
|
|
async def run_extraction(crawler: AsyncWebCrawler, url: str, strategy, name: str): |
|
"""Helper function to run extraction with proper configuration""" |
|
try: |
|
|
|
config = CrawlerRunConfig( |
|
cache_mode=CacheMode.BYPASS, |
|
extraction_strategy=strategy, |
|
markdown_generator=DefaultMarkdownGenerator( |
|
content_filter=PruningContentFilter() |
|
) |
|
) |
|
|
|
|
|
result = await crawler.arun(url=url, config=config) |
|
|
|
if result.success: |
|
print(f"\n=== {name} Results ===") |
|
print(f"Extracted Content: {result.extracted_content}") |
|
print(f"Raw Markdown Length: {len(result.markdown_v2.raw_markdown)}") |
|
print(f"Citations Markdown Length: {len(result.markdown_v2.markdown_with_citations)}") |
|
else: |
|
print(f"Error in {name}: Crawl failed") |
|
|
|
except Exception as e: |
|
print(f"Error in {name}: {str(e)}") |
|
|
|
async def main(): |
|
|
|
url = "https://example.com/product-page" |
|
|
|
|
|
browser_config = BrowserConfig( |
|
headless=True, |
|
verbose=True |
|
) |
|
|
|
|
|
|
|
|
|
markdown_strategy = LLMExtractionStrategy( |
|
provider="openai/gpt-4o-mini", |
|
api_token=os.getenv("OPENAI_API_KEY"), |
|
instruction="Extract product information including name, price, and description" |
|
) |
|
|
|
html_strategy = LLMExtractionStrategy( |
|
input_format="html", |
|
provider="openai/gpt-4o-mini", |
|
api_token=os.getenv("OPENAI_API_KEY"), |
|
instruction="Extract product information from HTML including structured data" |
|
) |
|
|
|
fit_markdown_strategy = LLMExtractionStrategy( |
|
input_format="fit_markdown", |
|
provider="openai/gpt-4o-mini", |
|
api_token=os.getenv("OPENAI_API_KEY"), |
|
instruction="Extract product information from cleaned markdown" |
|
) |
|
|
|
|
|
css_schema = { |
|
"baseSelector": ".product", |
|
"fields": [ |
|
{"name": "title", "selector": "h1.product-title", "type": "text"}, |
|
{"name": "price", "selector": ".price", "type": "text"}, |
|
{"name": "description", "selector": ".description", "type": "text"} |
|
] |
|
} |
|
css_strategy = JsonCssExtractionStrategy(schema=css_schema) |
|
|
|
|
|
xpath_schema = { |
|
"baseSelector": "//div[@class='product']", |
|
"fields": [ |
|
{"name": "title", "selector": ".//h1[@class='product-title']/text()", "type": "text"}, |
|
{"name": "price", "selector": ".//span[@class='price']/text()", "type": "text"}, |
|
{"name": "description", "selector": ".//div[@class='description']/text()", "type": "text"} |
|
] |
|
} |
|
xpath_strategy = JsonXPathExtractionStrategy(schema=xpath_schema) |
|
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler: |
|
|
|
await run_extraction(crawler, url, markdown_strategy, "Markdown LLM") |
|
await run_extraction(crawler, url, html_strategy, "HTML LLM") |
|
await run_extraction(crawler, url, fit_markdown_strategy, "Fit Markdown LLM") |
|
await run_extraction(crawler, url, css_strategy, "CSS Extraction") |
|
await run_extraction(crawler, url, xpath_strategy, "XPath Extraction") |
|
|
|
if __name__ == "__main__": |
|
asyncio.run(main()) |
|
|