File size: 6,726 Bytes
cfd5b88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import { prebuiltAppConfig, CreateMLCEngine } from "@mlc-ai/web-llm";
import hljs from "highlight.js";
import ace from "ace-builds";
// Required for ace to resolve the module correctly
require("ace-builds/src-noconflict/mode-javascript");
require("ace-builds/webpack-resolver");
// DO NOT REMOVE
// Required for user input type definition to be eval
const { Type } = require("@sinclair/typebox");
let engine = null;
let useCustomGrammar = false;
document.addEventListener("DOMContentLoaded", () => {
// Ensure elements are loaded before using them
const grammarSelection = document.getElementById("grammar-selection");
const ebnfContainer = document.getElementById("ebnf-grammar-container");
const schemaContainer = document.getElementById("schema-container");
const modelSelection = document.getElementById("model-selection");
const ebnfTextarea = document.getElementById("ebnf-grammar");
const promptTextarea = document.getElementById("prompt");
const outputDiv = document.getElementById("output");
const statsParagraph = document.getElementById("stats");
// Handle grammar selection changes
grammarSelection.onchange = (ev) => {
console.log("Grammar selection changed:", ev.target.value);
if (ev.target.value === "json") {
ebnfContainer.classList.add("hidden");
schemaContainer.classList.remove("hidden");
useCustomGrammar = false;
} else {
ebnfContainer.classList.remove("hidden");
schemaContainer.classList.add("hidden");
useCustomGrammar = true;
}
};
// Populate model selection dropdown
const availableModels = prebuiltAppConfig.model_list
.filter(
(m) =>
m.model_id.startsWith("SmolLM2")
)
.map((m) => m.model_id);
let selectedModel = availableModels[0];
availableModels.forEach((modelId) => {
const option = document.createElement("option");
option.value = modelId;
option.textContent = modelId;
modelSelection.appendChild(option);
});
modelSelection.value = selectedModel;
modelSelection.onchange = (e) => {
selectedModel = e.target.value;
engine = null; // Reset the engine when the model changes
};
// Editors setup with Ace
const jsonSchemaEditor = ace.edit("schema", {
mode: "ace/mode/javascript",
theme: "ace/theme/github",
wrap: true,
});
jsonSchemaEditor.setTheme("ace/theme/github");
jsonSchemaEditor.setValue(`{
"title":"User",
"type":"object",
"properties":{
"first_name":{
"type":"string"
},
"last_name":{
"type":"string"
},
"age":{
"type":"integer"
},
"is_active":{
"type":"boolean"
}
},
"required":[
"first_name",
"last_name",
"age"
]
}
`);
const grammarEditor = ace.edit("ebnf-grammar", {
theme: "ace/theme/github",
wrap: true,
});
grammarEditor.setTheme("ace/theme/github");
grammarEditor.setValue(String.raw`main ::= basic_array | basic_object
basic_any ::= basic_number | basic_string | basic_boolean | basic_null | basic_array | basic_object
basic_integer ::= ("0" | "-"? [1-9] [0-9]*) ".0"?
basic_number ::= ("0" | "-"? [1-9] [0-9]*) ("." [0-9]+)? ([eE] [+-]? [0-9]+)?
basic_string ::= (([\"] basic_string_1 [\"]))
basic_string_1 ::= "" | [^"\\\x00-\x1F] basic_string_1 | "\\" escape basic_string_1
escape ::= ["\\/bfnrt] | "u" [A-Fa-f0-9] [A-Fa-f0-9] [A-Fa-f0-9] [A-Fa-f0-9]
basic_boolean ::= "true" | "false"
basic_null ::= "null"
basic_array ::= "[" ("" | ws basic_any (ws "," ws basic_any)*) ws "]"
basic_object ::= "{" ("" | ws basic_string ws ":" ws basic_any ( ws "," ws basic_string ws ":" ws basic_any)*) ws "}"
ws ::= [\n\t]*`);
// Set initial prompt
promptTextarea.value = `
Create a user profile for a sales person with following properties:
- first_name: string
- last_name: string
- age: integer
- is_active: boolean
`;
// Generate button click handler
document.getElementById("generate").onclick = async () => {
if (!engine) {
engine = await CreateMLCEngine(selectedModel, {
initProgressCallback: (progress) => {
console.log(progress);
outputDiv.textContent = progress.text;
},
});
}
let response_format = { type: "grammar", grammar: grammarEditor.getValue() };
if (!useCustomGrammar) {
const schemaInput = jsonSchemaEditor.getValue();
let T;
try {
// T = eval(JSON.parse(schemaInput));
} catch (e) {
console.error("Invalid schema", e);
return;
}
const schema = JSON.stringify(T);
response_format = { type: "json_object", schema }
}
console.log(response_format);
const request = {
stream: true,
stream_options: { include_usage: true },
messages: [{ role: "user", content: promptTextarea.value }],
max_tokens: 512,
response_format,
};
let curMessage = "";
let usage = null;
const generator = await engine.chatCompletion(request);
for await (const chunk of generator) {
const curDelta = chunk.choices[0]?.delta.content;
if (curDelta) curMessage += curDelta;
if (chunk.usage) {
console.log(chunk.usage);
usage = chunk.usage;
}
outputDiv.textContent = curMessage;
}
const finalMessage = await engine.getMessage();
outputDiv.innerHTML = hljs.highlight(finalMessage, {
language: "json",
}).value;
if (usage) {
const statsTextParts = [];
console.log(usage);
if (usage.extra.prefill_tokens_per_s) {
statsTextParts.push(`Prefill Speed: ${usage.extra.prefill_tokens_per_s.toFixed(
1
)} tok/s`);
}
if (usage.extra.decode_tokens_per_s) {
statsTextParts.push(`Decode Speed: ${usage.extra.decode_tokens_per_s.toFixed(
1
)} tok/s`);
}
if (usage.extra.time_per_output_token_s) {
statsTextParts.push(`Time Per Output Token: ${(1000 * usage.extra.time_per_output_token_s).toFixed(
0
)} ms`);
}
if (usage.extra.time_to_first_token_s) {
statsTextParts.push(`Time to First Token: ${(1000 * usage.extra.time_to_first_token_s).toFixed(
0
)} ms`);
}
if (usage.extra.grammar_init_s) {
statsTextParts.push(`Grammar Init Overhead: ${(1000 * usage.extra.grammar_init_s).toFixed(
0
)} ms`);
}
if (usage.extra.grammar_per_token_s) {
statsTextParts.push(`Grammar Per-token Overhead: ${(1000 * usage.extra.grammar_per_token_s).toFixed(
2
)} ms`);
}
statsParagraph.textContent = statsTextParts.join(", ");
statsParagraph.classList.remove("hidden");
}
};
});
|