Spaces:
Runtime error
Runtime error
Upload 18 files
Browse files- .gitattributes +0 -1
- .gitignore +165 -0
- .pre-commit-config.yaml +37 -0
- .style.yapf +5 -0
- LICENSE +21 -0
- README.md +5 -4
- app.py +75 -0
- app_inference.py +162 -0
- app_training.py +152 -0
- app_upload.py +100 -0
- constants.py +6 -0
- inference.py +83 -0
- requirements.txt +9 -0
- style.css +3 -0
- train_realfill.py +952 -0
- trainer.py +168 -0
- uploader.py +42 -0
- utils.py +48 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
training_data/
|
2 |
+
experiments/
|
3 |
+
wandb/
|
4 |
+
|
5 |
+
|
6 |
+
# Byte-compiled / optimized / DLL files
|
7 |
+
__pycache__/
|
8 |
+
*.py[cod]
|
9 |
+
*$py.class
|
10 |
+
|
11 |
+
# C extensions
|
12 |
+
*.so
|
13 |
+
|
14 |
+
# Distribution / packaging
|
15 |
+
.Python
|
16 |
+
build/
|
17 |
+
develop-eggs/
|
18 |
+
dist/
|
19 |
+
downloads/
|
20 |
+
eggs/
|
21 |
+
.eggs/
|
22 |
+
lib/
|
23 |
+
lib64/
|
24 |
+
parts/
|
25 |
+
sdist/
|
26 |
+
var/
|
27 |
+
wheels/
|
28 |
+
share/python-wheels/
|
29 |
+
*.egg-info/
|
30 |
+
.installed.cfg
|
31 |
+
*.egg
|
32 |
+
MANIFEST
|
33 |
+
|
34 |
+
# PyInstaller
|
35 |
+
# Usually these files are written by a python script from a template
|
36 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
37 |
+
*.manifest
|
38 |
+
*.spec
|
39 |
+
|
40 |
+
# Installer logs
|
41 |
+
pip-log.txt
|
42 |
+
pip-delete-this-directory.txt
|
43 |
+
|
44 |
+
# Unit test / coverage reports
|
45 |
+
htmlcov/
|
46 |
+
.tox/
|
47 |
+
.nox/
|
48 |
+
.coverage
|
49 |
+
.coverage.*
|
50 |
+
.cache
|
51 |
+
nosetests.xml
|
52 |
+
coverage.xml
|
53 |
+
*.cover
|
54 |
+
*.py,cover
|
55 |
+
.hypothesis/
|
56 |
+
.pytest_cache/
|
57 |
+
cover/
|
58 |
+
|
59 |
+
# Translations
|
60 |
+
*.mo
|
61 |
+
*.pot
|
62 |
+
|
63 |
+
# Django stuff:
|
64 |
+
*.log
|
65 |
+
local_settings.py
|
66 |
+
db.sqlite3
|
67 |
+
db.sqlite3-journal
|
68 |
+
|
69 |
+
# Flask stuff:
|
70 |
+
instance/
|
71 |
+
.webassets-cache
|
72 |
+
|
73 |
+
# Scrapy stuff:
|
74 |
+
.scrapy
|
75 |
+
|
76 |
+
# Sphinx documentation
|
77 |
+
docs/_build/
|
78 |
+
|
79 |
+
# PyBuilder
|
80 |
+
.pybuilder/
|
81 |
+
target/
|
82 |
+
|
83 |
+
# Jupyter Notebook
|
84 |
+
.ipynb_checkpoints
|
85 |
+
|
86 |
+
# IPython
|
87 |
+
profile_default/
|
88 |
+
ipython_config.py
|
89 |
+
|
90 |
+
# pyenv
|
91 |
+
# For a library or package, you might want to ignore these files since the code is
|
92 |
+
# intended to run in multiple environments; otherwise, check them in:
|
93 |
+
# .python-version
|
94 |
+
|
95 |
+
# pipenv
|
96 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
97 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
98 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
99 |
+
# install all needed dependencies.
|
100 |
+
#Pipfile.lock
|
101 |
+
|
102 |
+
# poetry
|
103 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
104 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
105 |
+
# commonly ignored for libraries.
|
106 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
107 |
+
#poetry.lock
|
108 |
+
|
109 |
+
# pdm
|
110 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
111 |
+
#pdm.lock
|
112 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
113 |
+
# in version control.
|
114 |
+
# https://pdm.fming.dev/#use-with-ide
|
115 |
+
.pdm.toml
|
116 |
+
|
117 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
118 |
+
__pypackages__/
|
119 |
+
|
120 |
+
# Celery stuff
|
121 |
+
celerybeat-schedule
|
122 |
+
celerybeat.pid
|
123 |
+
|
124 |
+
# SageMath parsed files
|
125 |
+
*.sage.py
|
126 |
+
|
127 |
+
# Environments
|
128 |
+
.env
|
129 |
+
.venv
|
130 |
+
env/
|
131 |
+
venv/
|
132 |
+
ENV/
|
133 |
+
env.bak/
|
134 |
+
venv.bak/
|
135 |
+
|
136 |
+
# Spyder project settings
|
137 |
+
.spyderproject
|
138 |
+
.spyproject
|
139 |
+
|
140 |
+
# Rope project settings
|
141 |
+
.ropeproject
|
142 |
+
|
143 |
+
# mkdocs documentation
|
144 |
+
/site
|
145 |
+
|
146 |
+
# mypy
|
147 |
+
.mypy_cache/
|
148 |
+
.dmypy.json
|
149 |
+
dmypy.json
|
150 |
+
|
151 |
+
# Pyre type checker
|
152 |
+
.pyre/
|
153 |
+
|
154 |
+
# pytype static type analyzer
|
155 |
+
.pytype/
|
156 |
+
|
157 |
+
# Cython debug symbols
|
158 |
+
cython_debug/
|
159 |
+
|
160 |
+
# PyCharm
|
161 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
162 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
163 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
164 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
165 |
+
#.idea/
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
exclude: train_realfill.py
|
2 |
+
repos:
|
3 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
4 |
+
rev: v4.2.0
|
5 |
+
hooks:
|
6 |
+
- id: check-executables-have-shebangs
|
7 |
+
- id: check-json
|
8 |
+
- id: check-merge-conflict
|
9 |
+
- id: check-shebang-scripts-are-executable
|
10 |
+
- id: check-toml
|
11 |
+
- id: check-yaml
|
12 |
+
- id: double-quote-string-fixer
|
13 |
+
- id: end-of-file-fixer
|
14 |
+
- id: mixed-line-ending
|
15 |
+
args: ['--fix=lf']
|
16 |
+
- id: requirements-txt-fixer
|
17 |
+
- id: trailing-whitespace
|
18 |
+
- repo: https://github.com/myint/docformatter
|
19 |
+
rev: v1.4
|
20 |
+
hooks:
|
21 |
+
- id: docformatter
|
22 |
+
args: ['--in-place']
|
23 |
+
- repo: https://github.com/pycqa/isort
|
24 |
+
rev: 5.10.1
|
25 |
+
hooks:
|
26 |
+
- id: isort
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v0.991
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
args: ['--ignore-missing-imports']
|
32 |
+
additional_dependencies: ['types-python-slugify']
|
33 |
+
- repo: https://github.com/google/yapf
|
34 |
+
rev: v0.32.0
|
35 |
+
hooks:
|
36 |
+
- id: yapf
|
37 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 hysts
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
---
|
2 |
title: RealFill Training UI
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
title: RealFill Training UI
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.16.2
|
8 |
+
python_version: 3.10.9
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
license: mit
|
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from app_inference import create_inference_demo
|
11 |
+
from app_training import create_training_demo
|
12 |
+
from app_upload import create_upload_demo
|
13 |
+
from inference import InferencePipeline
|
14 |
+
from trainer import Trainer
|
15 |
+
|
16 |
+
TITLE = '# RealFill Training UI'
|
17 |
+
|
18 |
+
ORIGINAL_SPACE_ID = 'realfill-library/RealFill-Training-UI'
|
19 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
20 |
+
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
21 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
22 |
+
'''
|
23 |
+
|
24 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
25 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
26 |
+
else:
|
27 |
+
SETTINGS = 'Settings'
|
28 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
|
29 |
+
<center>
|
30 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
31 |
+
"T4 small" is sufficient to run this demo.
|
32 |
+
</center>
|
33 |
+
'''
|
34 |
+
|
35 |
+
HF_TOKEN_NOT_SPECIFIED_WARNING = f'''# Attention - The environment variable `HF_TOKEN` is not specified. Please specify your Hugging Face token with write permission as the value of it.
|
36 |
+
<center>
|
37 |
+
You can check and create your Hugging Face tokens <a href="https://huggingface.co/settings/tokens" target="_blank">here</a>.
|
38 |
+
You can specify environment variables in the "Repository secrets" section of the {SETTINGS} tab.
|
39 |
+
</center>
|
40 |
+
'''
|
41 |
+
|
42 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
43 |
+
|
44 |
+
|
45 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
with gr.Box():
|
48 |
+
gr.Markdown(warning_text)
|
49 |
+
return demo
|
50 |
+
|
51 |
+
|
52 |
+
pipe = InferencePipeline(HF_TOKEN)
|
53 |
+
trainer = Trainer(HF_TOKEN)
|
54 |
+
|
55 |
+
with gr.Blocks(css='style.css') as demo:
|
56 |
+
if os.getenv('IS_SHARED_UI'):
|
57 |
+
show_warning(SHARED_UI_WARNING)
|
58 |
+
if not torch.cuda.is_available():
|
59 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
60 |
+
if not HF_TOKEN:
|
61 |
+
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
62 |
+
|
63 |
+
gr.Markdown(TITLE)
|
64 |
+
with gr.Tabs():
|
65 |
+
with gr.TabItem('Train'):
|
66 |
+
create_training_demo(trainer, pipe)
|
67 |
+
with gr.TabItem('Test'):
|
68 |
+
create_inference_demo(pipe, HF_TOKEN)
|
69 |
+
with gr.TabItem('Upload'):
|
70 |
+
gr.Markdown('''
|
71 |
+
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
72 |
+
''')
|
73 |
+
create_upload_demo(HF_TOKEN)
|
74 |
+
|
75 |
+
demo.queue(max_size=1).launch(share=True)
|
app_inference.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import enum
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
from inference import InferencePipeline
|
11 |
+
from utils import find_exp_dirs
|
12 |
+
|
13 |
+
SAMPLE_MODEL_IDS = ['thuanz123/flowerwoman']
|
14 |
+
|
15 |
+
|
16 |
+
class ModelSource(enum.Enum):
|
17 |
+
SAMPLE = 'Sample'
|
18 |
+
HUB_LIB = 'Hub (realfill-library)'
|
19 |
+
LOCAL = 'Local'
|
20 |
+
|
21 |
+
|
22 |
+
class InferenceUtil:
|
23 |
+
def __init__(self, hf_token: str | None):
|
24 |
+
self.hf_token = hf_token
|
25 |
+
|
26 |
+
@staticmethod
|
27 |
+
def load_sample_model_list():
|
28 |
+
return gr.update(choices=SAMPLE_MODEL_IDS, value=SAMPLE_MODEL_IDS[0])
|
29 |
+
|
30 |
+
def load_hub_model_list(self) -> dict:
|
31 |
+
api = HfApi(token=self.hf_token)
|
32 |
+
choices = [
|
33 |
+
info.modelId for info in api.list_models(author='realfill-library')
|
34 |
+
]
|
35 |
+
return gr.update(choices=choices,
|
36 |
+
value=choices[0] if choices else None)
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def load_local_model_list() -> dict:
|
40 |
+
choices = find_exp_dirs()
|
41 |
+
return gr.update(choices=choices,
|
42 |
+
value=choices[0] if choices else None)
|
43 |
+
|
44 |
+
def reload_model_list(self, model_source: str) -> dict:
|
45 |
+
if model_source == ModelSource.SAMPLE.value:
|
46 |
+
return self.load_sample_model_list()
|
47 |
+
elif model_source == ModelSource.HUB_LIB.value:
|
48 |
+
return self.load_hub_model_list()
|
49 |
+
elif model_source == ModelSource.LOCAL.value:
|
50 |
+
return self.load_local_model_list()
|
51 |
+
else:
|
52 |
+
raise ValueError
|
53 |
+
|
54 |
+
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
55 |
+
try:
|
56 |
+
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
57 |
+
except Exception:
|
58 |
+
return '', ''
|
59 |
+
target_image = getattr(card.data, 'target_image', '')
|
60 |
+
target_mask = getattr(card.data, 'target_mask', '')
|
61 |
+
return target_image, target_mask
|
62 |
+
|
63 |
+
def reload_model_list_and_update_model_info(
|
64 |
+
self, model_source: str
|
65 |
+
) -> tuple[dict, str, str]:
|
66 |
+
model_list_update = self.reload_model_list(model_source)
|
67 |
+
model_list = model_list_update['choices']
|
68 |
+
model_info = self.load_model_info(model_list[0] if model_list else '')
|
69 |
+
return model_list_update, *model_info
|
70 |
+
|
71 |
+
|
72 |
+
def create_inference_demo(pipe: InferencePipeline,
|
73 |
+
hf_token: str | None = None) -> gr.Blocks:
|
74 |
+
app = InferenceUtil(hf_token)
|
75 |
+
|
76 |
+
with gr.Blocks() as demo:
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
with gr.Box():
|
80 |
+
model_source = gr.Radio(
|
81 |
+
label='Model Source',
|
82 |
+
choices=[_.value for _ in ModelSource],
|
83 |
+
value=ModelSource.SAMPLE.value)
|
84 |
+
reload_button = gr.Button('Reload Model List')
|
85 |
+
model_id = gr.Dropdown(label='Model ID',
|
86 |
+
choices=SAMPLE_MODEL_IDS,
|
87 |
+
value=SAMPLE_MODEL_IDS[0])
|
88 |
+
with gr.Accordion(
|
89 |
+
label=
|
90 |
+
'Model info (Target image and mask used for both training and inference)',
|
91 |
+
open=False):
|
92 |
+
with gr.Row():
|
93 |
+
target_image = gr.Image(
|
94 |
+
label='Target Image', interactive=False)
|
95 |
+
target_mask = gr.Image(
|
96 |
+
label='Target Mask', interactive=False)
|
97 |
+
seed = gr.Slider(label='Seed',
|
98 |
+
minimum=0,
|
99 |
+
maximum=100000,
|
100 |
+
step=1,
|
101 |
+
value=0)
|
102 |
+
with gr.Accordion('Other Parameters', open=False):
|
103 |
+
num_steps = gr.Slider(label='Number of Steps',
|
104 |
+
minimum=0,
|
105 |
+
maximum=100,
|
106 |
+
step=1,
|
107 |
+
value=25)
|
108 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
109 |
+
minimum=0,
|
110 |
+
maximum=50,
|
111 |
+
step=0.1,
|
112 |
+
value=5.0)
|
113 |
+
|
114 |
+
run_button = gr.Button('Generate')
|
115 |
+
|
116 |
+
gr.Markdown('''
|
117 |
+
- After training, you can press "Reload Model List" button to load your trained model names.
|
118 |
+
''')
|
119 |
+
with gr.Column():
|
120 |
+
result = gr.Image(label='Result')
|
121 |
+
|
122 |
+
model_source.change(
|
123 |
+
fn=app.reload_model_list_and_update_model_info,
|
124 |
+
inputs=model_source,
|
125 |
+
outputs=[
|
126 |
+
model_id,
|
127 |
+
target_image,
|
128 |
+
target_mask
|
129 |
+
])
|
130 |
+
reload_button.click(
|
131 |
+
fn=app.reload_model_list_and_update_model_info,
|
132 |
+
inputs=model_source,
|
133 |
+
outputs=[
|
134 |
+
model_id,
|
135 |
+
target_image,
|
136 |
+
target_mask
|
137 |
+
])
|
138 |
+
model_id.change(fn=app.load_model_info,
|
139 |
+
inputs=model_id,
|
140 |
+
outputs=[
|
141 |
+
target_image,
|
142 |
+
target_mask
|
143 |
+
])
|
144 |
+
inputs = [
|
145 |
+
model_id,
|
146 |
+
seed,
|
147 |
+
target_image,
|
148 |
+
target_mask,
|
149 |
+
num_steps,
|
150 |
+
guidance_scale,
|
151 |
+
]
|
152 |
+
run_button.click(fn=pipe.run, inputs=inputs, outputs=result)
|
153 |
+
return demo
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == '__main__':
|
157 |
+
import os
|
158 |
+
|
159 |
+
hf_token = os.getenv('HF_TOKEN')
|
160 |
+
pipe = InferencePipeline(hf_token)
|
161 |
+
demo = create_inference_demo(pipe, hf_token)
|
162 |
+
demo.queue(max_size=10).launch(share=False)
|
app_training.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from constants import UploadTarget
|
10 |
+
from inference import InferencePipeline
|
11 |
+
from trainer import Trainer
|
12 |
+
|
13 |
+
|
14 |
+
def create_training_demo(trainer: Trainer,
|
15 |
+
pipe: InferencePipeline | None = None) -> gr.Blocks:
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Row():
|
18 |
+
with gr.Column():
|
19 |
+
with gr.Box():
|
20 |
+
gr.Markdown('Training Data')
|
21 |
+
reference_images = gr.Files(label='Reference images')
|
22 |
+
target_image = gr.Files(label='Target image')
|
23 |
+
target_mask = gr.Files(label='Target mask')
|
24 |
+
gr.Markdown('''
|
25 |
+
- Upload reference images of the scene you are planning on training on.
|
26 |
+
- For the target image, the inpainting region should be white.
|
27 |
+
- For the target mask, white for inpainting and black for keeping as is.
|
28 |
+
''')
|
29 |
+
with gr.Box():
|
30 |
+
gr.Markdown('Output Model')
|
31 |
+
output_model_name = gr.Text(label='Name of your model',
|
32 |
+
max_lines=1)
|
33 |
+
delete_existing_model = gr.Checkbox(
|
34 |
+
label='Delete existing model of the same name',
|
35 |
+
value=False)
|
36 |
+
with gr.Box():
|
37 |
+
gr.Markdown('Upload Settings')
|
38 |
+
with gr.Row():
|
39 |
+
upload_to_hub = gr.Checkbox(
|
40 |
+
label='Upload model to Hub', value=True)
|
41 |
+
use_private_repo = gr.Checkbox(label='Private',
|
42 |
+
value=True)
|
43 |
+
delete_existing_repo = gr.Checkbox(
|
44 |
+
label='Delete existing repo of the same name',
|
45 |
+
value=False)
|
46 |
+
upload_to = gr.Radio(
|
47 |
+
label='Upload to',
|
48 |
+
choices=[_.value for _ in UploadTarget],
|
49 |
+
value=UploadTarget.REALFILL_LIBRARY.value)
|
50 |
+
gr.Markdown('''
|
51 |
+
- By default, trained models will be uploaded to [ReaFill Library](https://huggingface.co/realfill-library).
|
52 |
+
- You can also choose "Personal Profile", in which case, the model will be uploaded to https://huggingface.co/{your_username}/{model_name}.
|
53 |
+
''')
|
54 |
+
|
55 |
+
with gr.Box():
|
56 |
+
gr.Markdown('Training Parameters')
|
57 |
+
with gr.Row():
|
58 |
+
base_model = gr.Text(
|
59 |
+
label='Base Model',
|
60 |
+
value='stabilityai/stable-diffusion-2-inpainting',
|
61 |
+
max_lines=1)
|
62 |
+
resolution = gr.Dropdown(choices=['512', '768'],
|
63 |
+
value='512',
|
64 |
+
label='Resolution')
|
65 |
+
num_training_steps = gr.Number(
|
66 |
+
label='Number of Training Steps', value=2000, precision=0)
|
67 |
+
unet_learning_rate = gr.Number(label='Unet Learning Rate', value=0.0002)
|
68 |
+
text_encoder_learning_rate = gr.Number(label='Text Encoder Learning Rate', value=0.00004)
|
69 |
+
lora_rank = gr.Number(label='LoRA rank value', value=8, precision=0)
|
70 |
+
lora_dropout = gr.Number(label='LoRA dropout rate', value=0.1)
|
71 |
+
lora_alpha = gr.Number(label='LoRA alpha value', value=16, precision=0)
|
72 |
+
gradient_accumulation = gr.Number(
|
73 |
+
label='Number of Gradient Accumulation',
|
74 |
+
value=1,
|
75 |
+
precision=0)
|
76 |
+
seed = gr.Slider(label='Seed',
|
77 |
+
minimum=0,
|
78 |
+
maximum=100000,
|
79 |
+
step=1,
|
80 |
+
value=0)
|
81 |
+
fp16 = gr.Checkbox(label='FP16', value=True)
|
82 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
|
83 |
+
checkpointing_steps = gr.Number(label='Checkpointing Steps',
|
84 |
+
value=100,
|
85 |
+
precision=0)
|
86 |
+
use_wandb = gr.Checkbox(label='Use W&B',
|
87 |
+
value=False,
|
88 |
+
interactive=bool(
|
89 |
+
os.getenv('WANDB_API_KEY')))
|
90 |
+
validation_steps = gr.Number(label='Validation Steps',
|
91 |
+
value=100,
|
92 |
+
precision=0)
|
93 |
+
gr.Markdown('''
|
94 |
+
- The base model must be a model that is compatible with [diffusers](https://github.com/huggingface/diffusers) library.
|
95 |
+
- It takes a few minutes to download the base model first.
|
96 |
+
- It will take about 16 minutes to train for 2000 steps with a T4 GPU.
|
97 |
+
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
|
98 |
+
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
|
99 |
+
- You need to set the environment variable `WANDB_API_KEY` if you'd like to use [W&B](https://wandb.ai/site). See [W&B documentation](https://docs.wandb.ai/guides/track/advanced/environment-variables).
|
100 |
+
- **Note:** Due to [this issue](https://github.com/huggingface/accelerate/issues/944), currently, training will not terminate properly if you use W&B.
|
101 |
+
''')
|
102 |
+
|
103 |
+
remove_gpu_after_training = gr.Checkbox(
|
104 |
+
label='Remove GPU after training',
|
105 |
+
value=False,
|
106 |
+
interactive=bool(os.getenv('SPACE_ID')),
|
107 |
+
visible=False)
|
108 |
+
run_button = gr.Button('Start Training')
|
109 |
+
|
110 |
+
with gr.Box():
|
111 |
+
gr.Markdown('Output message')
|
112 |
+
output_message = gr.Markdown()
|
113 |
+
|
114 |
+
if pipe is not None:
|
115 |
+
run_button.click(fn=pipe.clear)
|
116 |
+
run_button.click(fn=trainer.run,
|
117 |
+
inputs=[
|
118 |
+
reference_images,
|
119 |
+
target_image,
|
120 |
+
target_mask,
|
121 |
+
output_model_name,
|
122 |
+
delete_existing_model,
|
123 |
+
base_model,
|
124 |
+
resolution,
|
125 |
+
num_training_steps,
|
126 |
+
unet_learning_rate,
|
127 |
+
text_encoder_learning_rate,
|
128 |
+
lora_rank,
|
129 |
+
lora_dropout,
|
130 |
+
lora_alpha,
|
131 |
+
gradient_accumulation,
|
132 |
+
seed,
|
133 |
+
fp16,
|
134 |
+
use_8bit_adam,
|
135 |
+
checkpointing_steps,
|
136 |
+
use_wandb,
|
137 |
+
validation_steps,
|
138 |
+
upload_to_hub,
|
139 |
+
use_private_repo,
|
140 |
+
delete_existing_repo,
|
141 |
+
upload_to,
|
142 |
+
remove_gpu_after_training,
|
143 |
+
],
|
144 |
+
outputs=output_message)
|
145 |
+
return demo
|
146 |
+
|
147 |
+
|
148 |
+
if __name__ == '__main__':
|
149 |
+
hf_token = os.getenv('HF_TOKEN')
|
150 |
+
trainer = Trainer(hf_token)
|
151 |
+
demo = create_training_demo(trainer)
|
152 |
+
demo.queue(max_size=1).launch(share=False)
|
app_upload.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import pathlib
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import slugify
|
9 |
+
|
10 |
+
from constants import UploadTarget
|
11 |
+
from uploader import Uploader
|
12 |
+
from utils import find_exp_dirs
|
13 |
+
|
14 |
+
|
15 |
+
class ModelUploader(Uploader):
|
16 |
+
def upload_model(
|
17 |
+
self,
|
18 |
+
folder_path: str,
|
19 |
+
repo_name: str,
|
20 |
+
upload_to: str,
|
21 |
+
private: bool,
|
22 |
+
delete_existing_repo: bool,
|
23 |
+
) -> str:
|
24 |
+
if not folder_path:
|
25 |
+
raise ValueError
|
26 |
+
if not repo_name:
|
27 |
+
repo_name = pathlib.Path(folder_path).name
|
28 |
+
repo_name = slugify.slugify(repo_name)
|
29 |
+
|
30 |
+
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
|
31 |
+
organization = ''
|
32 |
+
elif upload_to == UploadTarget.REALFILL_LIBRARY.value:
|
33 |
+
organization = 'realfill-library'
|
34 |
+
else:
|
35 |
+
raise ValueError
|
36 |
+
|
37 |
+
return self.upload(folder_path,
|
38 |
+
repo_name,
|
39 |
+
organization=organization,
|
40 |
+
private=private,
|
41 |
+
delete_existing_repo=delete_existing_repo)
|
42 |
+
|
43 |
+
|
44 |
+
def load_local_model_list() -> dict:
|
45 |
+
choices = find_exp_dirs(ignore_repo=True)
|
46 |
+
return gr.update(choices=choices, value=choices[0] if choices else None)
|
47 |
+
|
48 |
+
|
49 |
+
def create_upload_demo(hf_token: str | None) -> gr.Blocks:
|
50 |
+
uploader = ModelUploader(hf_token)
|
51 |
+
model_dirs = find_exp_dirs(ignore_repo=True)
|
52 |
+
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
with gr.Box():
|
55 |
+
gr.Markdown('Local Models')
|
56 |
+
reload_button = gr.Button('Reload Model List')
|
57 |
+
model_dir = gr.Dropdown(
|
58 |
+
label='Model names',
|
59 |
+
choices=model_dirs,
|
60 |
+
value=model_dirs[0] if model_dirs else None)
|
61 |
+
with gr.Box():
|
62 |
+
gr.Markdown('Upload Settings')
|
63 |
+
with gr.Row():
|
64 |
+
use_private_repo = gr.Checkbox(label='Private', value=True)
|
65 |
+
delete_existing_repo = gr.Checkbox(
|
66 |
+
label='Delete existing repo of the same name', value=False)
|
67 |
+
upload_to = gr.Radio(label='Upload to',
|
68 |
+
choices=[_.value for _ in UploadTarget],
|
69 |
+
value=UploadTarget.REALFILL_LIBRARY.value)
|
70 |
+
model_name = gr.Textbox(label='Model Name')
|
71 |
+
upload_button = gr.Button('Upload')
|
72 |
+
gr.Markdown('''
|
73 |
+
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{your_username}/{model_name}) or to the public [ReaFill Library](https://huggingface.co/realfill-library) (i.e. https://huggingface.co/realfill-library/{model_name}).
|
74 |
+
''')
|
75 |
+
with gr.Box():
|
76 |
+
gr.Markdown('Output message')
|
77 |
+
output_message = gr.Markdown()
|
78 |
+
|
79 |
+
reload_button.click(fn=load_local_model_list,
|
80 |
+
inputs=None,
|
81 |
+
outputs=model_dir)
|
82 |
+
upload_button.click(fn=uploader.upload_model,
|
83 |
+
inputs=[
|
84 |
+
model_dir,
|
85 |
+
model_name,
|
86 |
+
upload_to,
|
87 |
+
use_private_repo,
|
88 |
+
delete_existing_repo,
|
89 |
+
],
|
90 |
+
outputs=output_message)
|
91 |
+
|
92 |
+
return demo
|
93 |
+
|
94 |
+
|
95 |
+
if __name__ == '__main__':
|
96 |
+
import os
|
97 |
+
|
98 |
+
hf_token = os.getenv('HF_TOKEN')
|
99 |
+
demo = create_upload_demo(hf_token)
|
100 |
+
demo.queue(max_size=1).launch(share=False)
|
constants.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
|
3 |
+
|
4 |
+
class UploadTarget(enum.Enum):
|
5 |
+
PERSONAL_PROFILE = 'Personal Profile'
|
6 |
+
REALFILL_LIBRARY = 'RealFill Library'
|
inference.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import pathlib
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import PIL.Image
|
8 |
+
import torch
|
9 |
+
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
10 |
+
from huggingface_hub import ModelCard
|
11 |
+
|
12 |
+
|
13 |
+
class InferencePipeline:
|
14 |
+
def __init__(self, hf_token: str | None = None):
|
15 |
+
self.hf_token = hf_token
|
16 |
+
self.pipe = None
|
17 |
+
self.device = torch.device(
|
18 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
19 |
+
self.model_id = None
|
20 |
+
|
21 |
+
def clear(self) -> None:
|
22 |
+
self.model_id = None
|
23 |
+
del self.pipe
|
24 |
+
self.pipe = None
|
25 |
+
torch.cuda.empty_cache()
|
26 |
+
gc.collect()
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def check_if_model_is_local(model_id: str) -> bool:
|
30 |
+
return pathlib.Path(model_id).exists()
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def get_model_card(model_id: str,
|
34 |
+
hf_token: str | None = None) -> ModelCard:
|
35 |
+
if InferencePipeline.check_if_model_is_local(model_id):
|
36 |
+
card_path = (pathlib.Path(model_id) / 'README.md').as_posix()
|
37 |
+
else:
|
38 |
+
card_path = model_id
|
39 |
+
return ModelCard.load(card_path, token=hf_token)
|
40 |
+
|
41 |
+
def load_pipe(self, model_id: str) -> None:
|
42 |
+
if model_id == self.model_id:
|
43 |
+
return
|
44 |
+
|
45 |
+
if self.device.type == 'cpu':
|
46 |
+
pipe = DiffusionPipeline.from_pretrained(
|
47 |
+
model_id, use_auth_token=self.hf_token)
|
48 |
+
else:
|
49 |
+
pipe = DiffusionPipeline.from_pretrained(
|
50 |
+
model_id, torch_dtype=torch.float16,
|
51 |
+
use_auth_token=self.hf_token)
|
52 |
+
pipe = pipe.to(self.device)
|
53 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
|
54 |
+
pipe.scheduler.config)
|
55 |
+
self.pipe = pipe
|
56 |
+
|
57 |
+
pipe.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
|
58 |
+
self.model_id = model_id # type: ignore
|
59 |
+
|
60 |
+
def run(
|
61 |
+
self,
|
62 |
+
model_id: str,
|
63 |
+
target_image: str,
|
64 |
+
target_mask: str,
|
65 |
+
seed: int,
|
66 |
+
n_steps: int,
|
67 |
+
guidance_scale: float,
|
68 |
+
) -> PIL.Image.Image:
|
69 |
+
if not torch.cuda.is_available():
|
70 |
+
raise gr.Error('CUDA is not available.')
|
71 |
+
|
72 |
+
self.load_pipe(model_id)
|
73 |
+
|
74 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
75 |
+
out = self.pipe(
|
76 |
+
"a photo of sks",
|
77 |
+
image=target_image,
|
78 |
+
mask_image=target_mask,
|
79 |
+
num_inference_steps=n_steps,
|
80 |
+
guidance_scale=guidance_scale,
|
81 |
+
generator=generator,
|
82 |
+
) # type: ignore
|
83 |
+
return out.images[0]
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.20.1
|
2 |
+
accelerate==0.23.0
|
3 |
+
transformers==4.34.0
|
4 |
+
peft==0.5.0
|
5 |
+
torch==2.0.1
|
6 |
+
torchvision==0.15.2
|
7 |
+
ftfy==6.1.1
|
8 |
+
tensorboard==2.14.0
|
9 |
+
Jinja2==3.1.2
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
train_realfill.py
ADDED
@@ -0,0 +1,952 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import argparse
|
3 |
+
import copy
|
4 |
+
import itertools
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torch.utils.checkpoint
|
15 |
+
import transformers
|
16 |
+
from accelerate import Accelerator
|
17 |
+
from accelerate.logging import get_logger
|
18 |
+
from accelerate.utils import set_seed
|
19 |
+
from huggingface_hub import create_repo, upload_folder
|
20 |
+
from packaging import version
|
21 |
+
from PIL import Image
|
22 |
+
from PIL.ImageOps import exif_transpose
|
23 |
+
from torch.utils.data import Dataset
|
24 |
+
import torchvision.transforms.v2 as transforms_v2
|
25 |
+
from tqdm.auto import tqdm
|
26 |
+
from transformers import AutoTokenizer, CLIPTextModel
|
27 |
+
|
28 |
+
import diffusers
|
29 |
+
from diffusers import (
|
30 |
+
AutoencoderKL,
|
31 |
+
DDPMScheduler,
|
32 |
+
StableDiffusionInpaintPipeline,
|
33 |
+
DPMSolverMultistepScheduler,
|
34 |
+
UNet2DConditionModel,
|
35 |
+
)
|
36 |
+
from diffusers.optimization import get_scheduler
|
37 |
+
from diffusers.utils import check_min_version, is_wandb_available
|
38 |
+
from diffusers.utils.import_utils import is_xformers_available
|
39 |
+
|
40 |
+
from peft import PeftModel, LoraConfig, get_peft_model
|
41 |
+
|
42 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
43 |
+
check_min_version("0.20.1")
|
44 |
+
|
45 |
+
logger = get_logger(__name__)
|
46 |
+
|
47 |
+
def make_mask(images, resolution, times=30):
|
48 |
+
mask, times = torch.ones_like(images[0:1, :, :]), np.random.randint(1, times)
|
49 |
+
min_size, max_size, margin = np.array([0.03, 0.25, 0.01]) * resolution
|
50 |
+
max_size = min(max_size, resolution - margin * 2)
|
51 |
+
|
52 |
+
for _ in range(times):
|
53 |
+
width = np.random.randint(int(min_size), int(max_size))
|
54 |
+
height = np.random.randint(int(min_size), int(max_size))
|
55 |
+
|
56 |
+
x_start = np.random.randint(int(margin), resolution - int(margin) - width + 1)
|
57 |
+
y_start = np.random.randint(int(margin), resolution - int(margin) - height + 1)
|
58 |
+
mask[:, y_start:y_start + height, x_start:x_start + width] = 0
|
59 |
+
|
60 |
+
mask = 1 - mask if random.random() < 0.5 else mask
|
61 |
+
return mask
|
62 |
+
|
63 |
+
def save_model_card(
|
64 |
+
repo_id: str,
|
65 |
+
base_model: str,
|
66 |
+
target_image: str,
|
67 |
+
target_mask: str,
|
68 |
+
repo_folder=None,
|
69 |
+
):
|
70 |
+
yaml = f"""
|
71 |
+
---
|
72 |
+
license: creativeml-openrail-m
|
73 |
+
base_model: {base_model}
|
74 |
+
target_image: {target_image}
|
75 |
+
target_mask: {target_mask}
|
76 |
+
tags:
|
77 |
+
- stable-diffusion-inpainting
|
78 |
+
- stable-diffusion-inpainting-diffusers
|
79 |
+
- text-to-image
|
80 |
+
- diffusers
|
81 |
+
- realfill
|
82 |
+
inference: true
|
83 |
+
---
|
84 |
+
"""
|
85 |
+
model_card = f"""
|
86 |
+
# RealFill - {repo_id}
|
87 |
+
|
88 |
+
This is a realfill model derived from {base_model}. The weights were trained using [RealFill](https://realfill.github.io/).
|
89 |
+
"""
|
90 |
+
with open(os.path.join(repo_folder, "README.md"), "w") as f:
|
91 |
+
f.write(yaml + model_card)
|
92 |
+
|
93 |
+
def log_validation(
|
94 |
+
text_encoder,
|
95 |
+
tokenizer,
|
96 |
+
unet,
|
97 |
+
args,
|
98 |
+
accelerator,
|
99 |
+
weight_dtype,
|
100 |
+
epoch,
|
101 |
+
):
|
102 |
+
logger.info(
|
103 |
+
f"Running validation... \nGenerating {args.num_validation_images} images"
|
104 |
+
)
|
105 |
+
|
106 |
+
# create pipeline (note: unet and vae are loaded again in float32)
|
107 |
+
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
108 |
+
args.pretrained_model_name_or_path,
|
109 |
+
tokenizer=tokenizer,
|
110 |
+
revision=args.revision,
|
111 |
+
torch_dtype=weight_dtype,
|
112 |
+
)
|
113 |
+
|
114 |
+
# set `keep_fp32_wrapper` to True because we do not want to remove
|
115 |
+
# mixed precision hooks while we are still training
|
116 |
+
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True)
|
117 |
+
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True)
|
118 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
119 |
+
|
120 |
+
pipeline = pipeline.to(accelerator.device)
|
121 |
+
pipeline.set_progress_bar_config(disable=True)
|
122 |
+
|
123 |
+
# run inference
|
124 |
+
generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
125 |
+
|
126 |
+
target_dir = Path(args.train_data_dir) / "target"
|
127 |
+
target_image, target_mask = target_dir / "target.png", target_dir / "mask.png"
|
128 |
+
image, mask_image = Image.open(target_image), Image.open(target_mask)
|
129 |
+
|
130 |
+
if image.mode != "RGB":
|
131 |
+
image = image.convert("RGB")
|
132 |
+
|
133 |
+
images = []
|
134 |
+
for _ in range(args.num_validation_images):
|
135 |
+
image = pipeline(
|
136 |
+
prompt="a photo of sks", image=image, mask_image=mask_image,
|
137 |
+
num_inference_steps=25, guidance_scale=5, generator=generator
|
138 |
+
).images[0]
|
139 |
+
images.append(image)
|
140 |
+
|
141 |
+
for tracker in accelerator.trackers:
|
142 |
+
if tracker.name == "tensorboard":
|
143 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
144 |
+
tracker.writer.add_images(f"validation", np_images, epoch, dataformats="NHWC")
|
145 |
+
if tracker.name == "wandb":
|
146 |
+
tracker.log(
|
147 |
+
{
|
148 |
+
f"validation": [
|
149 |
+
wandb.Image(image, caption=str(i)) for i, image in enumerate(images)
|
150 |
+
]
|
151 |
+
}
|
152 |
+
)
|
153 |
+
|
154 |
+
del pipeline
|
155 |
+
torch.cuda.empty_cache()
|
156 |
+
|
157 |
+
return images
|
158 |
+
|
159 |
+
def parse_args(input_args=None):
|
160 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
161 |
+
parser.add_argument(
|
162 |
+
"--pretrained_model_name_or_path",
|
163 |
+
type=str,
|
164 |
+
default=None,
|
165 |
+
required=True,
|
166 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--revision",
|
170 |
+
type=str,
|
171 |
+
default=None,
|
172 |
+
required=False,
|
173 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
174 |
+
)
|
175 |
+
parser.add_argument(
|
176 |
+
"--tokenizer_name",
|
177 |
+
type=str,
|
178 |
+
default=None,
|
179 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--train_data_dir",
|
183 |
+
type=str,
|
184 |
+
default=None,
|
185 |
+
required=True,
|
186 |
+
help="A folder containing the training data of images.",
|
187 |
+
)
|
188 |
+
parser.add_argument(
|
189 |
+
"--num_validation_images",
|
190 |
+
type=int,
|
191 |
+
default=4,
|
192 |
+
help="Number of images that should be generated during validation with `validation_conditioning`.",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--validation_steps",
|
196 |
+
type=int,
|
197 |
+
default=100,
|
198 |
+
help=(
|
199 |
+
"Run realfill validation every X steps. RealFill validation consists of running the conditioning"
|
200 |
+
" `args.validation_conditioning` multiple times: `args.num_validation_images`."
|
201 |
+
),
|
202 |
+
)
|
203 |
+
parser.add_argument(
|
204 |
+
"--output_dir",
|
205 |
+
type=str,
|
206 |
+
default="realfill-model",
|
207 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
208 |
+
)
|
209 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
210 |
+
parser.add_argument(
|
211 |
+
"--resolution",
|
212 |
+
type=int,
|
213 |
+
default=512,
|
214 |
+
help=(
|
215 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
216 |
+
" resolution"
|
217 |
+
),
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
221 |
+
)
|
222 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
223 |
+
parser.add_argument(
|
224 |
+
"--max_train_steps",
|
225 |
+
type=int,
|
226 |
+
default=None,
|
227 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
228 |
+
)
|
229 |
+
parser.add_argument(
|
230 |
+
"--checkpointing_steps",
|
231 |
+
type=int,
|
232 |
+
default=500,
|
233 |
+
help=(
|
234 |
+
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
235 |
+
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
236 |
+
" training using `--resume_from_checkpoint`."
|
237 |
+
),
|
238 |
+
)
|
239 |
+
parser.add_argument(
|
240 |
+
"--checkpoints_total_limit",
|
241 |
+
type=int,
|
242 |
+
default=None,
|
243 |
+
help=("Max number of checkpoints to store."),
|
244 |
+
)
|
245 |
+
parser.add_argument(
|
246 |
+
"--resume_from_checkpoint",
|
247 |
+
type=str,
|
248 |
+
default=None,
|
249 |
+
help=(
|
250 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
251 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
252 |
+
),
|
253 |
+
)
|
254 |
+
parser.add_argument(
|
255 |
+
"--gradient_accumulation_steps",
|
256 |
+
type=int,
|
257 |
+
default=1,
|
258 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
259 |
+
)
|
260 |
+
parser.add_argument(
|
261 |
+
"--gradient_checkpointing",
|
262 |
+
action="store_true",
|
263 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
264 |
+
)
|
265 |
+
parser.add_argument(
|
266 |
+
"--unet_learning_rate",
|
267 |
+
type=float,
|
268 |
+
default=2e-4,
|
269 |
+
help="Learning rate to use for unet.",
|
270 |
+
)
|
271 |
+
parser.add_argument(
|
272 |
+
"--text_encoder_learning_rate",
|
273 |
+
type=float,
|
274 |
+
default=4e-5,
|
275 |
+
help="Learning rate to use for text encoder.",
|
276 |
+
)
|
277 |
+
parser.add_argument(
|
278 |
+
"--scale_lr",
|
279 |
+
action="store_true",
|
280 |
+
default=False,
|
281 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
282 |
+
)
|
283 |
+
parser.add_argument(
|
284 |
+
"--lr_scheduler",
|
285 |
+
type=str,
|
286 |
+
default="constant",
|
287 |
+
help=(
|
288 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
289 |
+
' "constant", "constant_with_warmup"]'
|
290 |
+
),
|
291 |
+
)
|
292 |
+
parser.add_argument(
|
293 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
294 |
+
)
|
295 |
+
parser.add_argument(
|
296 |
+
"--lr_num_cycles",
|
297 |
+
type=int,
|
298 |
+
default=1,
|
299 |
+
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
300 |
+
)
|
301 |
+
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
302 |
+
parser.add_argument(
|
303 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
304 |
+
)
|
305 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
306 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
307 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
308 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
309 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
310 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
311 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
312 |
+
parser.add_argument(
|
313 |
+
"--hub_model_id",
|
314 |
+
type=str,
|
315 |
+
default=None,
|
316 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
317 |
+
)
|
318 |
+
parser.add_argument(
|
319 |
+
"--logging_dir",
|
320 |
+
type=str,
|
321 |
+
default="logs",
|
322 |
+
help=(
|
323 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
324 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
325 |
+
),
|
326 |
+
)
|
327 |
+
parser.add_argument(
|
328 |
+
"--allow_tf32",
|
329 |
+
action="store_true",
|
330 |
+
help=(
|
331 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
332 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
333 |
+
),
|
334 |
+
)
|
335 |
+
parser.add_argument(
|
336 |
+
"--report_to",
|
337 |
+
type=str,
|
338 |
+
default="tensorboard",
|
339 |
+
help=(
|
340 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
341 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
342 |
+
),
|
343 |
+
)
|
344 |
+
parser.add_argument(
|
345 |
+
"--wandb_key",
|
346 |
+
type=str,
|
347 |
+
default=None,
|
348 |
+
help=("If report to option is set to wandb, api-key for wandb used for login to wandb "),
|
349 |
+
)
|
350 |
+
parser.add_argument(
|
351 |
+
"--wandb_project_name",
|
352 |
+
type=str,
|
353 |
+
default=None,
|
354 |
+
help=("If report to option is set to wandb, project name in wandb for log tracking "),
|
355 |
+
)
|
356 |
+
parser.add_argument(
|
357 |
+
"--mixed_precision",
|
358 |
+
type=str,
|
359 |
+
default=None,
|
360 |
+
choices=["no", "fp16", "bf16"],
|
361 |
+
help=(
|
362 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
363 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
364 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
365 |
+
),
|
366 |
+
)
|
367 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
368 |
+
parser.add_argument(
|
369 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
370 |
+
)
|
371 |
+
parser.add_argument(
|
372 |
+
"--set_grads_to_none",
|
373 |
+
action="store_true",
|
374 |
+
help=(
|
375 |
+
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
|
376 |
+
" behaviors, so disable this argument if it causes any problems. More info:"
|
377 |
+
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
|
378 |
+
),
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"--lora_rank",
|
382 |
+
type=int,
|
383 |
+
default=16,
|
384 |
+
help=("The dimension of the LoRA update matrices."),
|
385 |
+
)
|
386 |
+
parser.add_argument(
|
387 |
+
"--lora_alpha",
|
388 |
+
type=int,
|
389 |
+
default=27,
|
390 |
+
help=("The alpha constant of the LoRA update matrices."),
|
391 |
+
)
|
392 |
+
parser.add_argument(
|
393 |
+
"--lora_dropout",
|
394 |
+
type=float,
|
395 |
+
default=0.0,
|
396 |
+
help="The dropout rate of the LoRA update matrices.",
|
397 |
+
)
|
398 |
+
parser.add_argument(
|
399 |
+
"--lora_bias",
|
400 |
+
type=str,
|
401 |
+
default="none",
|
402 |
+
help="The bias type of the Lora update matrices. Must be 'none', 'all' or 'lora_only'.",
|
403 |
+
)
|
404 |
+
|
405 |
+
if input_args is not None:
|
406 |
+
args = parser.parse_args(input_args)
|
407 |
+
else:
|
408 |
+
args = parser.parse_args()
|
409 |
+
|
410 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
411 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
412 |
+
args.local_rank = env_local_rank
|
413 |
+
|
414 |
+
return args
|
415 |
+
|
416 |
+
class RealFillDataset(Dataset):
|
417 |
+
"""
|
418 |
+
A dataset to prepare the training and conditioning images and
|
419 |
+
the masks with the dummy prompt for fine-tuning the model.
|
420 |
+
It pre-processes the images, masks and tokenizes the prompts.
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(
|
424 |
+
self,
|
425 |
+
train_data_root,
|
426 |
+
tokenizer,
|
427 |
+
size=512,
|
428 |
+
):
|
429 |
+
self.size = size
|
430 |
+
self.tokenizer = tokenizer
|
431 |
+
|
432 |
+
self.ref_data_root = Path(train_data_root) / "ref"
|
433 |
+
self.target_image = Path(train_data_root) / "target" / "target.jpg"
|
434 |
+
self.target_mask = Path(train_data_root) / "target" / "mask.jpg"
|
435 |
+
if not (self.ref_data_root.exists() and self.target_image.exists() and self.target_mask.exists()):
|
436 |
+
raise ValueError("Train images root doesn't exists.")
|
437 |
+
|
438 |
+
self.train_images_path = list(self.ref_data_root.iterdir()) + [self.target_image]
|
439 |
+
self.num_train_images = len(self.train_images_path)
|
440 |
+
self.train_prompt = "a photo of sks"
|
441 |
+
|
442 |
+
self.transform = transforms_v2.Compose(
|
443 |
+
[
|
444 |
+
transforms_v2.RandomResize(size, int(1.125 * size)),
|
445 |
+
transforms_v2.RandomCrop(size),
|
446 |
+
transforms_v2.ToImageTensor(),
|
447 |
+
transforms_v2.ConvertImageDtype(),
|
448 |
+
transforms_v2.Normalize([0.5], [0.5]),
|
449 |
+
]
|
450 |
+
)
|
451 |
+
|
452 |
+
def __len__(self):
|
453 |
+
return self.num_train_images
|
454 |
+
|
455 |
+
def __getitem__(self, index):
|
456 |
+
example = {}
|
457 |
+
|
458 |
+
image = Image.open(self.train_images_path[index])
|
459 |
+
image = exif_transpose(image)
|
460 |
+
|
461 |
+
if not image.mode == "RGB":
|
462 |
+
image = image.convert("RGB")
|
463 |
+
|
464 |
+
if index < len(self) - 1:
|
465 |
+
weighting = Image.new("L", image.size)
|
466 |
+
else:
|
467 |
+
weighting = Image.open(self.target_mask)
|
468 |
+
weighting = exif_transpose(weighting)
|
469 |
+
|
470 |
+
image, weighting = self.transform(image, weighting)
|
471 |
+
example["images"], example["weightings"] = image, weighting < 0
|
472 |
+
|
473 |
+
if random.random() < 0.1:
|
474 |
+
example["masks"] = torch.ones_like(example["images"][0:1, :, :])
|
475 |
+
else:
|
476 |
+
example["masks"] = make_mask(example["images"], self.size)
|
477 |
+
|
478 |
+
example["conditioning_images"] = example["images"] * (example["masks"] < 0.5)
|
479 |
+
|
480 |
+
train_prompt = "" if random.random() < 0.1 else self.train_prompt
|
481 |
+
example["prompt_ids"] = self.tokenizer(
|
482 |
+
train_prompt,
|
483 |
+
truncation=True,
|
484 |
+
padding="max_length",
|
485 |
+
max_length=self.tokenizer.model_max_length,
|
486 |
+
return_tensors="pt",
|
487 |
+
).input_ids
|
488 |
+
|
489 |
+
return example
|
490 |
+
|
491 |
+
def collate_fn(examples):
|
492 |
+
input_ids = [example["prompt_ids"] for example in examples]
|
493 |
+
images = [example["images"] for example in examples]
|
494 |
+
|
495 |
+
masks = [example["masks"] for example in examples]
|
496 |
+
weightings = [example["weightings"] for example in examples]
|
497 |
+
conditioning_images = [example["conditioning_images"] for example in examples]
|
498 |
+
|
499 |
+
images = torch.stack(images)
|
500 |
+
images = images.to(memory_format=torch.contiguous_format).float()
|
501 |
+
|
502 |
+
masks = torch.stack(masks)
|
503 |
+
masks = masks.to(memory_format=torch.contiguous_format).float()
|
504 |
+
|
505 |
+
weightings = torch.stack(weightings)
|
506 |
+
weightings = weightings.to(memory_format=torch.contiguous_format).float()
|
507 |
+
|
508 |
+
conditioning_images = torch.stack(conditioning_images)
|
509 |
+
conditioning_images = conditioning_images.to(memory_format=torch.contiguous_format).float()
|
510 |
+
|
511 |
+
input_ids = torch.cat(input_ids, dim=0)
|
512 |
+
|
513 |
+
batch = {
|
514 |
+
"input_ids": input_ids,
|
515 |
+
"images": images,
|
516 |
+
"masks": masks,
|
517 |
+
"weightings": weightings,
|
518 |
+
"conditioning_images": conditioning_images,
|
519 |
+
}
|
520 |
+
return batch
|
521 |
+
|
522 |
+
def main(args):
|
523 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
524 |
+
|
525 |
+
accelerator = Accelerator(
|
526 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
527 |
+
mixed_precision=args.mixed_precision,
|
528 |
+
log_with=args.report_to,
|
529 |
+
project_dir=logging_dir,
|
530 |
+
)
|
531 |
+
|
532 |
+
if args.report_to == "wandb":
|
533 |
+
if not is_wandb_available():
|
534 |
+
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
535 |
+
import wandb
|
536 |
+
|
537 |
+
wandb.login(key=args.wandb_key)
|
538 |
+
wandb.init(project=args.wandb_project_name)
|
539 |
+
|
540 |
+
# Make one log on every process with the configuration for debugging.
|
541 |
+
logging.basicConfig(
|
542 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
543 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
544 |
+
level=logging.INFO,
|
545 |
+
)
|
546 |
+
logger.info(accelerator.state, main_process_only=False)
|
547 |
+
if accelerator.is_local_main_process:
|
548 |
+
transformers.utils.logging.set_verbosity_warning()
|
549 |
+
diffusers.utils.logging.set_verbosity_info()
|
550 |
+
else:
|
551 |
+
transformers.utils.logging.set_verbosity_error()
|
552 |
+
diffusers.utils.logging.set_verbosity_error()
|
553 |
+
|
554 |
+
# If passed along, set the training seed now.
|
555 |
+
if args.seed is not None:
|
556 |
+
set_seed(args.seed)
|
557 |
+
|
558 |
+
# Handle the repository creation
|
559 |
+
if accelerator.is_main_process:
|
560 |
+
if args.output_dir is not None:
|
561 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
562 |
+
|
563 |
+
if args.push_to_hub:
|
564 |
+
repo_id = create_repo(
|
565 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
566 |
+
).repo_id
|
567 |
+
|
568 |
+
# Load the tokenizer
|
569 |
+
if args.tokenizer_name:
|
570 |
+
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
|
571 |
+
elif args.pretrained_model_name_or_path:
|
572 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
573 |
+
args.pretrained_model_name_or_path,
|
574 |
+
subfolder="tokenizer",
|
575 |
+
revision=args.revision,
|
576 |
+
use_fast=False,
|
577 |
+
)
|
578 |
+
|
579 |
+
# Load scheduler and models
|
580 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
581 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
582 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
583 |
+
)
|
584 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
|
585 |
+
unet = UNet2DConditionModel.from_pretrained(
|
586 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
|
587 |
+
)
|
588 |
+
|
589 |
+
config = LoraConfig(
|
590 |
+
r=args.lora_rank,
|
591 |
+
lora_alpha=args.lora_alpha,
|
592 |
+
target_modules=["to_k", "to_q", "to_v", "key", "query", "value"],
|
593 |
+
lora_dropout=args.lora_dropout,
|
594 |
+
bias=args.lora_bias,
|
595 |
+
)
|
596 |
+
unet = get_peft_model(unet, config)
|
597 |
+
|
598 |
+
config = LoraConfig(
|
599 |
+
r=args.lora_rank,
|
600 |
+
lora_alpha=args.lora_alpha,
|
601 |
+
target_modules=["k_proj", "q_proj", "v_proj"],
|
602 |
+
lora_dropout=args.lora_dropout,
|
603 |
+
bias=args.lora_bias,
|
604 |
+
)
|
605 |
+
text_encoder = get_peft_model(text_encoder, config)
|
606 |
+
|
607 |
+
vae.requires_grad_(False)
|
608 |
+
|
609 |
+
if args.enable_xformers_memory_efficient_attention:
|
610 |
+
if is_xformers_available():
|
611 |
+
import xformers
|
612 |
+
|
613 |
+
xformers_version = version.parse(xformers.__version__)
|
614 |
+
if xformers_version == version.parse("0.0.16"):
|
615 |
+
logger.warn(
|
616 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
617 |
+
)
|
618 |
+
unet.enable_xformers_memory_efficient_attention()
|
619 |
+
else:
|
620 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
621 |
+
|
622 |
+
if args.gradient_checkpointing:
|
623 |
+
unet.enable_gradient_checkpointing()
|
624 |
+
text_encoder.gradient_checkpointing_enable()
|
625 |
+
|
626 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
627 |
+
def save_model_hook(models, weights, output_dir):
|
628 |
+
if accelerator.is_main_process:
|
629 |
+
for model in models:
|
630 |
+
sub_dir = "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else "text_encoder"
|
631 |
+
model.save_pretrained(os.path.join(output_dir, sub_dir))
|
632 |
+
|
633 |
+
# make sure to pop weight so that corresponding model is not saved again
|
634 |
+
weights.pop()
|
635 |
+
|
636 |
+
def load_model_hook(models, input_dir):
|
637 |
+
while len(models) > 0:
|
638 |
+
# pop models so that they are not loaded again
|
639 |
+
model = models.pop()
|
640 |
+
|
641 |
+
sub_dir = "unet" if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else "text_encoder"
|
642 |
+
model_cls = UNet2DConditionModel if isinstance(model.base_model.model, type(accelerator.unwrap_model(unet.base_model.model))) else CLIPTextModel
|
643 |
+
|
644 |
+
load_model = model_cls.from_pretrained(args.pretrained_model_name_or_path, subfolder=sub_dir)
|
645 |
+
load_model = PeftModel.from_pretrained(load_model, input_dir, subfolder=sub_dir)
|
646 |
+
|
647 |
+
model.load_state_dict(load_model.state_dict())
|
648 |
+
del load_model
|
649 |
+
|
650 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
651 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
652 |
+
|
653 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
654 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
655 |
+
if args.allow_tf32:
|
656 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
657 |
+
|
658 |
+
if args.scale_lr:
|
659 |
+
args.unet_learning_rate = (
|
660 |
+
args.unet_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
661 |
+
)
|
662 |
+
|
663 |
+
args.text_encoder_learning_rate = (
|
664 |
+
args.text_encoder_learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
665 |
+
)
|
666 |
+
|
667 |
+
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
668 |
+
if args.use_8bit_adam:
|
669 |
+
try:
|
670 |
+
import bitsandbytes as bnb
|
671 |
+
except ImportError:
|
672 |
+
raise ImportError(
|
673 |
+
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
674 |
+
)
|
675 |
+
|
676 |
+
optimizer_class = bnb.optim.AdamW8bit
|
677 |
+
else:
|
678 |
+
optimizer_class = torch.optim.AdamW
|
679 |
+
|
680 |
+
# Optimizer creation
|
681 |
+
optimizer = optimizer_class(
|
682 |
+
[
|
683 |
+
{"params": unet.parameters(), "lr": args.unet_learning_rate},
|
684 |
+
{"params": text_encoder.parameters(), "lr": args.text_encoder_learning_rate}
|
685 |
+
],
|
686 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
687 |
+
weight_decay=args.adam_weight_decay,
|
688 |
+
eps=args.adam_epsilon,
|
689 |
+
)
|
690 |
+
|
691 |
+
# Dataset and DataLoaders creation:
|
692 |
+
train_dataset = RealFillDataset(
|
693 |
+
train_data_root=args.train_data_dir,
|
694 |
+
tokenizer=tokenizer,
|
695 |
+
size=args.resolution,
|
696 |
+
)
|
697 |
+
|
698 |
+
train_dataloader = torch.utils.data.DataLoader(
|
699 |
+
train_dataset,
|
700 |
+
batch_size=args.train_batch_size,
|
701 |
+
shuffle=True,
|
702 |
+
collate_fn=collate_fn,
|
703 |
+
num_workers=1,
|
704 |
+
)
|
705 |
+
|
706 |
+
# Scheduler and math around the number of training steps.
|
707 |
+
overrode_max_train_steps = False
|
708 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
709 |
+
if args.max_train_steps is None:
|
710 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
711 |
+
overrode_max_train_steps = True
|
712 |
+
|
713 |
+
lr_scheduler = get_scheduler(
|
714 |
+
args.lr_scheduler,
|
715 |
+
optimizer=optimizer,
|
716 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
717 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
718 |
+
num_cycles=args.lr_num_cycles,
|
719 |
+
power=args.lr_power,
|
720 |
+
)
|
721 |
+
|
722 |
+
# Prepare everything with our `accelerator`.
|
723 |
+
unet, text_encoder, optimizer, train_dataloader = accelerator.prepare(
|
724 |
+
unet, text_encoder, optimizer, train_dataloader
|
725 |
+
)
|
726 |
+
|
727 |
+
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora unet) to half-precision
|
728 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
729 |
+
weight_dtype = torch.float32
|
730 |
+
if accelerator.mixed_precision == "fp16":
|
731 |
+
weight_dtype = torch.float16
|
732 |
+
elif accelerator.mixed_precision == "bf16":
|
733 |
+
weight_dtype = torch.bfloat16
|
734 |
+
|
735 |
+
# Move vae to device and cast to weight_dtype
|
736 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
737 |
+
|
738 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
739 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
740 |
+
if overrode_max_train_steps:
|
741 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
742 |
+
# Afterwards we recalculate our number of training epochs
|
743 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
744 |
+
|
745 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
746 |
+
# The trackers initializes automatically on the main process.
|
747 |
+
if accelerator.is_main_process:
|
748 |
+
tracker_config = vars(copy.deepcopy(args))
|
749 |
+
accelerator.init_trackers("realfill", config=tracker_config)
|
750 |
+
|
751 |
+
# Train!
|
752 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
753 |
+
|
754 |
+
logger.info("***** Running training *****")
|
755 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
756 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
757 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
758 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
759 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
760 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
761 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
762 |
+
global_step = 0
|
763 |
+
first_epoch = 0
|
764 |
+
|
765 |
+
# Potentially load in the weights and states from a previous save
|
766 |
+
if args.resume_from_checkpoint:
|
767 |
+
if args.resume_from_checkpoint != "latest":
|
768 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
769 |
+
else:
|
770 |
+
# Get the mos recent checkpoint
|
771 |
+
dirs = os.listdir(args.output_dir)
|
772 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
773 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
774 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
775 |
+
|
776 |
+
if path is None:
|
777 |
+
accelerator.print(
|
778 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
779 |
+
)
|
780 |
+
args.resume_from_checkpoint = None
|
781 |
+
initial_global_step = 0
|
782 |
+
else:
|
783 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
784 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
785 |
+
global_step = int(path.split("-")[1])
|
786 |
+
|
787 |
+
initial_global_step = global_step
|
788 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
789 |
+
else:
|
790 |
+
initial_global_step = 0
|
791 |
+
|
792 |
+
progress_bar = tqdm(
|
793 |
+
range(0, args.max_train_steps),
|
794 |
+
initial=initial_global_step,
|
795 |
+
desc="Steps",
|
796 |
+
# Only show the progress bar once on each machine.
|
797 |
+
disable=not accelerator.is_local_main_process,
|
798 |
+
)
|
799 |
+
|
800 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
801 |
+
unet.train()
|
802 |
+
text_encoder.train()
|
803 |
+
|
804 |
+
for step, batch in enumerate(train_dataloader):
|
805 |
+
with accelerator.accumulate(unet, text_encoder):
|
806 |
+
# Convert images to latent space
|
807 |
+
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
808 |
+
latents = latents * 0.18215
|
809 |
+
|
810 |
+
# Convert masked images to latent space
|
811 |
+
conditionings = vae.encode(batch["conditioning_images"].to(dtype=weight_dtype)).latent_dist.sample()
|
812 |
+
conditionings = conditionings * 0.18215
|
813 |
+
|
814 |
+
# Downsample mask and weighting so that they match with the latents
|
815 |
+
masks, size = batch["masks"].to(dtype=weight_dtype), latents.shape[2:]
|
816 |
+
masks = F.interpolate(masks, size=size)
|
817 |
+
|
818 |
+
weightings = batch["weightings"].to(dtype=weight_dtype)
|
819 |
+
weightings = F.interpolate(weightings, size=size)
|
820 |
+
|
821 |
+
# Sample noise that we'll add to the latents
|
822 |
+
noise = torch.randn_like(latents)
|
823 |
+
bsz = latents.shape[0]
|
824 |
+
|
825 |
+
# Sample a random timestep for each image
|
826 |
+
timesteps = torch.randint(
|
827 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device
|
828 |
+
)
|
829 |
+
timesteps = timesteps.long()
|
830 |
+
|
831 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
832 |
+
# (this is the forward diffusion process)
|
833 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
834 |
+
|
835 |
+
# Concatenate noisy latents, masks and conditionings to get inputs to unet
|
836 |
+
inputs = torch.cat([noisy_latents, masks, conditionings], dim=1)
|
837 |
+
|
838 |
+
# Get the text embedding for conditioning
|
839 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
840 |
+
|
841 |
+
# Predict the noise residual
|
842 |
+
model_pred = unet(inputs, timesteps, encoder_hidden_states).sample
|
843 |
+
|
844 |
+
# Compute the diffusion loss
|
845 |
+
assert noise_scheduler.config.prediction_type == "epsilon"
|
846 |
+
loss = (weightings * F.mse_loss(model_pred.float(), noise.float(), reduction="none")).mean()
|
847 |
+
|
848 |
+
# Backpropagate
|
849 |
+
accelerator.backward(loss)
|
850 |
+
if accelerator.sync_gradients:
|
851 |
+
params_to_clip = itertools.chain(
|
852 |
+
unet.parameters(), text_encoder.parameters()
|
853 |
+
)
|
854 |
+
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
855 |
+
|
856 |
+
optimizer.step()
|
857 |
+
lr_scheduler.step()
|
858 |
+
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
|
859 |
+
|
860 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
861 |
+
if accelerator.sync_gradients:
|
862 |
+
progress_bar.update(1)
|
863 |
+
if args.report_to == "wandb":
|
864 |
+
accelerator.print(progress_bar)
|
865 |
+
global_step += 1
|
866 |
+
|
867 |
+
if accelerator.is_main_process:
|
868 |
+
if global_step % args.checkpointing_steps == 0:
|
869 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
870 |
+
if args.checkpoints_total_limit is not None:
|
871 |
+
checkpoints = os.listdir(args.output_dir)
|
872 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
873 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
874 |
+
|
875 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
876 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
877 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
878 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
879 |
+
|
880 |
+
logger.info(
|
881 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
882 |
+
)
|
883 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
884 |
+
|
885 |
+
for removing_checkpoint in removing_checkpoints:
|
886 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
887 |
+
shutil.rmtree(removing_checkpoint)
|
888 |
+
|
889 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
890 |
+
accelerator.save_state(save_path)
|
891 |
+
logger.info(f"Saved state to {save_path}")
|
892 |
+
|
893 |
+
if global_step % args.validation_steps == 0:
|
894 |
+
log_validation(
|
895 |
+
text_encoder,
|
896 |
+
tokenizer,
|
897 |
+
unet,
|
898 |
+
args,
|
899 |
+
accelerator,
|
900 |
+
weight_dtype,
|
901 |
+
global_step,
|
902 |
+
)
|
903 |
+
|
904 |
+
logs = {"loss": loss.detach().item()}
|
905 |
+
progress_bar.set_postfix(**logs)
|
906 |
+
accelerator.log(logs, step=global_step)
|
907 |
+
|
908 |
+
if global_step >= args.max_train_steps:
|
909 |
+
break
|
910 |
+
|
911 |
+
# Save the lora layers
|
912 |
+
accelerator.wait_for_everyone()
|
913 |
+
if accelerator.is_main_process:
|
914 |
+
pipeline = StableDiffusionInpaintPipeline.from_pretrained(
|
915 |
+
args.pretrained_model_name_or_path,
|
916 |
+
unet=accelerator.unwrap_model(unet.merge_and_unload(), keep_fp32_wrapper=True),
|
917 |
+
text_encoder=accelerator.unwrap_model(text_encoder.merge_and_unload(), keep_fp32_wrapper=True),
|
918 |
+
revision=args.revision,
|
919 |
+
)
|
920 |
+
|
921 |
+
pipeline.save_pretrained(args.output_dir)
|
922 |
+
|
923 |
+
# Final inference
|
924 |
+
images = log_validation(
|
925 |
+
text_encoder,
|
926 |
+
tokenizer,
|
927 |
+
unet,
|
928 |
+
args,
|
929 |
+
accelerator,
|
930 |
+
weight_dtype,
|
931 |
+
global_step,
|
932 |
+
)
|
933 |
+
|
934 |
+
if args.push_to_hub:
|
935 |
+
save_model_card(
|
936 |
+
repo_id,
|
937 |
+
images=images,
|
938 |
+
base_model=args.pretrained_model_name_or_path,
|
939 |
+
repo_folder=args.output_dir,
|
940 |
+
)
|
941 |
+
upload_folder(
|
942 |
+
repo_id=repo_id,
|
943 |
+
folder_path=args.output_dir,
|
944 |
+
commit_message="End of training",
|
945 |
+
ignore_patterns=["step_*", "epoch_*"],
|
946 |
+
)
|
947 |
+
|
948 |
+
accelerator.end_training()
|
949 |
+
|
950 |
+
if __name__ == "__main__":
|
951 |
+
args = parse_args()
|
952 |
+
main(args)
|
trainer.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import datetime
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import shlex
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import PIL.Image
|
12 |
+
import slugify
|
13 |
+
import torch
|
14 |
+
from huggingface_hub import HfApi
|
15 |
+
|
16 |
+
from app_upload import ModelUploader
|
17 |
+
from utils import save_model_card
|
18 |
+
|
19 |
+
URL_TO_JOIN_LIBRARY_ORG = 'https://huggingface.co/organizations/realfill-library/share/WctmaLvDHWxnuWoJxagTrzVXbGwxoqoJoG'
|
20 |
+
|
21 |
+
class Trainer:
|
22 |
+
def __init__(self, hf_token: str | None = None):
|
23 |
+
self.hf_token = hf_token
|
24 |
+
self.api = HfApi(token=hf_token)
|
25 |
+
self.model_uploader = ModelUploader(hf_token)
|
26 |
+
|
27 |
+
def prepare_dataset(self, reference_images: list, resolution: int,
|
28 |
+
target_image: PIL.Image, target_mask: PIL.Image,
|
29 |
+
train_data_dir: pathlib.Path) -> None:
|
30 |
+
shutil.rmtree(train_data_dir, ignore_errors=True)
|
31 |
+
train_data_dir.mkdir(parents=True)
|
32 |
+
|
33 |
+
(train_data_dir / 'ref').mkdir(parents=True)
|
34 |
+
(train_data_dir / 'target').mkdir(parents=True)
|
35 |
+
|
36 |
+
for i, temp_path in enumerate(reference_images):
|
37 |
+
image = PIL.Image.open(temp_path.name)
|
38 |
+
image = image.convert('RGB')
|
39 |
+
out_path = train_data_dir / 'ref' / f'{i:03d}.jpg'
|
40 |
+
image.save(out_path, format='JPEG', quality=100)
|
41 |
+
|
42 |
+
target_image = PIL.Image.open(target_image[0].name)
|
43 |
+
target_image = target_image.convert('RGB')
|
44 |
+
out_path = train_data_dir / 'target' / f'target.jpg'
|
45 |
+
target_image.save(out_path, format='JPEG', quality=100)
|
46 |
+
|
47 |
+
target_mask = PIL.Image.open(target_mask[0].name)
|
48 |
+
target_mask = target_mask.convert('L')
|
49 |
+
out_path = train_data_dir / 'target' / f'mask.jpg'
|
50 |
+
target_mask.save(out_path, format='JPEG', quality=100)
|
51 |
+
|
52 |
+
def join_library_org(self) -> None:
|
53 |
+
subprocess.run(
|
54 |
+
shlex.split(
|
55 |
+
f'curl -X POST -H "Authorization: Bearer {self.hf_token}" -H "Content-Type: application/json" {URL_TO_JOIN_LIBRARY_ORG}'
|
56 |
+
))
|
57 |
+
|
58 |
+
def run(
|
59 |
+
self,
|
60 |
+
reference_images: list | None,
|
61 |
+
target_image: PIL.ImageFile | None,
|
62 |
+
target_mask: PIL.ImageFile | None,
|
63 |
+
output_model_name: str,
|
64 |
+
overwrite_existing_model: bool,
|
65 |
+
base_model: str,
|
66 |
+
resolution_s: str,
|
67 |
+
n_steps: int,
|
68 |
+
unet_learning_rate: float,
|
69 |
+
text_encoder_learning_rate: float,
|
70 |
+
lora_rank: int,
|
71 |
+
lora_dropout: float,
|
72 |
+
lora_alpha: int,
|
73 |
+
gradient_accumulation: int,
|
74 |
+
seed: int,
|
75 |
+
fp16: bool,
|
76 |
+
use_8bit_adam: bool,
|
77 |
+
checkpointing_steps: int,
|
78 |
+
use_wandb: bool,
|
79 |
+
validation_steps: int,
|
80 |
+
upload_to_hub: bool,
|
81 |
+
use_private_repo: bool,
|
82 |
+
delete_existing_repo: bool,
|
83 |
+
upload_to: str,
|
84 |
+
remove_gpu_after_training: bool,
|
85 |
+
) -> str:
|
86 |
+
if not torch.cuda.is_available():
|
87 |
+
raise gr.Error('CUDA is not available.')
|
88 |
+
if reference_images is None:
|
89 |
+
raise gr.Error('You need to upload reference images.')
|
90 |
+
if target_image is None:
|
91 |
+
raise gr.Error('The instance prompt is missing.')
|
92 |
+
|
93 |
+
resolution = int(resolution_s)
|
94 |
+
|
95 |
+
if not output_model_name:
|
96 |
+
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
|
97 |
+
output_model_name = f'realfill-{timestamp}'
|
98 |
+
output_model_name = slugify.slugify(output_model_name)
|
99 |
+
|
100 |
+
repo_dir = pathlib.Path(__file__).parent
|
101 |
+
output_dir = repo_dir / 'experiments' / output_model_name
|
102 |
+
if overwrite_existing_model or upload_to_hub:
|
103 |
+
shutil.rmtree(output_dir, ignore_errors=True)
|
104 |
+
output_dir.mkdir(parents=True)
|
105 |
+
|
106 |
+
train_data_dir = repo_dir / 'training_data' / output_model_name
|
107 |
+
self.prepare_dataset(reference_images, resolution, target_image, target_mask, train_data_dir)
|
108 |
+
|
109 |
+
if upload_to_hub:
|
110 |
+
self.join_library_org()
|
111 |
+
|
112 |
+
command = f'''
|
113 |
+
python train_realfill.py \
|
114 |
+
--pretrained_model_name_or_path={base_model} \
|
115 |
+
--train_data_dir={train_data_dir} \
|
116 |
+
--output_dir={output_dir} \
|
117 |
+
--resolution={resolution} \
|
118 |
+
--train_batch_size=16 \
|
119 |
+
--gradient_accumulation_steps={gradient_accumulation} --gradient_checkpointing \
|
120 |
+
--unet_learning_rate={unet_learning_rate} \
|
121 |
+
--text_encoder_learning_rate={text_encoder_learning_rate} \
|
122 |
+
--lr_scheduler=constant \
|
123 |
+
--lr_warmup_steps=100 \
|
124 |
+
--set_grads_to_none \
|
125 |
+
--max_train_steps={n_steps} \
|
126 |
+
--checkpointing_steps={checkpointing_steps} \
|
127 |
+
--validation_steps={validation_steps} \
|
128 |
+
--lora_rank={lora_rank} \
|
129 |
+
--lora_dropout={lora_dropout} \
|
130 |
+
--lora_alpha={lora_alpha} \
|
131 |
+
--seed={seed}
|
132 |
+
'''
|
133 |
+
if fp16:
|
134 |
+
command += ' --mixed_precision fp16'
|
135 |
+
if use_8bit_adam:
|
136 |
+
command += ' --use_8bit_adam'
|
137 |
+
if use_wandb:
|
138 |
+
command += ' --report_to wandb'
|
139 |
+
|
140 |
+
with open(output_dir / 'train.sh', 'w') as f:
|
141 |
+
command_s = ' '.join(command.split())
|
142 |
+
f.write(command_s)
|
143 |
+
subprocess.run(shlex.split(command))
|
144 |
+
save_model_card(save_dir=output_dir,
|
145 |
+
base_model=base_model,
|
146 |
+
target_image=train_data_dir / 'target' / 'target.jpg',
|
147 |
+
target_mask=train_data_dir / 'target' / 'mask.jpg')
|
148 |
+
|
149 |
+
message = 'Training completed!'
|
150 |
+
print(message)
|
151 |
+
|
152 |
+
if upload_to_hub:
|
153 |
+
upload_message = self.model_uploader.upload_model(
|
154 |
+
folder_path=output_dir.as_posix(),
|
155 |
+
repo_name=output_model_name,
|
156 |
+
upload_to=upload_to,
|
157 |
+
private=use_private_repo,
|
158 |
+
delete_existing_repo=delete_existing_repo)
|
159 |
+
print(upload_message)
|
160 |
+
message = message + '\n' + upload_message
|
161 |
+
|
162 |
+
if remove_gpu_after_training:
|
163 |
+
space_id = os.getenv('SPACE_ID')
|
164 |
+
if space_id:
|
165 |
+
self.api.request_space_hardware(repo_id=space_id,
|
166 |
+
hardware='cpu-basic')
|
167 |
+
|
168 |
+
return message
|
uploader.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from huggingface_hub import HfApi
|
4 |
+
|
5 |
+
|
6 |
+
class Uploader:
|
7 |
+
def __init__(self, hf_token: str | None):
|
8 |
+
self.api = HfApi(token=hf_token)
|
9 |
+
|
10 |
+
def get_username(self) -> str:
|
11 |
+
return self.api.whoami()['name']
|
12 |
+
|
13 |
+
def upload(self,
|
14 |
+
folder_path: str,
|
15 |
+
repo_name: str,
|
16 |
+
organization: str = '',
|
17 |
+
repo_type: str = 'model',
|
18 |
+
private: bool = True,
|
19 |
+
delete_existing_repo: bool = False) -> str:
|
20 |
+
if not folder_path:
|
21 |
+
raise ValueError
|
22 |
+
if not repo_name:
|
23 |
+
raise ValueError
|
24 |
+
if not organization:
|
25 |
+
organization = self.get_username()
|
26 |
+
repo_id = f'{organization}/{repo_name}'
|
27 |
+
if delete_existing_repo:
|
28 |
+
try:
|
29 |
+
self.api.delete_repo(repo_id, repo_type=repo_type)
|
30 |
+
except Exception:
|
31 |
+
pass
|
32 |
+
try:
|
33 |
+
self.api.create_repo(repo_id, repo_type=repo_type, private=private)
|
34 |
+
self.api.upload_folder(repo_id=repo_id,
|
35 |
+
folder_path=folder_path,
|
36 |
+
path_in_repo='.',
|
37 |
+
repo_type=repo_type)
|
38 |
+
url = f'https://huggingface.co/{repo_id}'
|
39 |
+
message = f'Your model was successfully uploaded to <a href="{url}" target="_blank">{url}</a>.'
|
40 |
+
except Exception as e:
|
41 |
+
message = str(e)
|
42 |
+
return message
|
utils.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import pathlib
|
4 |
+
|
5 |
+
|
6 |
+
def find_exp_dirs(ignore_repo: bool = False) -> list[str]:
|
7 |
+
repo_dir = pathlib.Path(__file__).parent
|
8 |
+
exp_root_dir = repo_dir / 'experiments'
|
9 |
+
if not exp_root_dir.exists():
|
10 |
+
return []
|
11 |
+
exp_dirs = sorted(exp_root_dir.glob('*'))
|
12 |
+
exp_dirs = [
|
13 |
+
exp_dir for exp_dir in exp_dirs
|
14 |
+
if (exp_dir / 'model_index.json').exists()
|
15 |
+
]
|
16 |
+
if ignore_repo:
|
17 |
+
exp_dirs = [
|
18 |
+
exp_dir for exp_dir in exp_dirs if not (exp_dir / '.git').exists()
|
19 |
+
]
|
20 |
+
return [path.relative_to(repo_dir).as_posix() for path in exp_dirs]
|
21 |
+
|
22 |
+
|
23 |
+
def save_model_card(
|
24 |
+
save_dir: pathlib.Path,
|
25 |
+
base_model: str,
|
26 |
+
target_image: str,
|
27 |
+
target_mask: str,
|
28 |
+
) -> None:
|
29 |
+
model_card = f'''---
|
30 |
+
license: creativeml-openrail-m
|
31 |
+
base_model: {base_model}
|
32 |
+
target_image: {target_image}
|
33 |
+
target_mask: {target_mask}
|
34 |
+
tags:
|
35 |
+
- stable-diffusion-inpainting
|
36 |
+
- stable-diffusion-inpainting-diffusers
|
37 |
+
- text-to-image
|
38 |
+
- diffusers
|
39 |
+
- realfill
|
40 |
+
inference: true
|
41 |
+
---
|
42 |
+
# RealFill - {save_dir.name}
|
43 |
+
|
44 |
+
These are RealFill weights for [{base_model}](https://huggingface.co/{base_model}). The weights were trained using [RealFill](https://realfill.github.io/).
|
45 |
+
'''
|
46 |
+
|
47 |
+
with open(save_dir / 'README.md', 'w') as f:
|
48 |
+
f.write(model_card)
|