File size: 29,845 Bytes
41d69fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
# 0- libraries
import transformers
import gradio as gr

from youtube_transcript_api import YouTubeTranscriptApi
from huggingface_hub import InferenceClient
from pytube import YouTube
import pytube
import torch

# 1 - abstractive_summary
# 1.1 - initialize
import os
save_dir = os.path.join(os.getcwd(), "docs")
if not os.path.exists(save_dir):
    os.mkdir(save_dir)
transcription_model_id = "openai/whisper-large"
llm_model_id = "tiiuae/falcon-7b-instruct"
HF_TOKEN = os.environ.get("HF_TOKEN", None)

# 1.2 - transcription
def get_yt_transcript(url):
    text = ""
    vid_id = pytube.extract.video_id(url)
    temp = YouTubeTranscriptApi.get_transcript(vid_id)
    for t in temp:
        text += t["text"] + " "
    return text

# 1.2.1 - locally_transcribe
def transcribe_yt_vid(url):
    # download YouTube video's audio
    yt = YouTube(str(url))
    audio = yt.streams.filter(only_audio=True).first()
    out_file = audio.download(filename="audio.mp3", output_path=save_dir)

    # defining an automatic-speech-recognition pipeline
    asr = transformers.pipeline(
        "automatic-speech-recognition",
        model=transcription_model_id,
        device_map="auto",
    )

    # setting model config parameters
    asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
        language="en", task="transcribe"
    )

    # invoking the Whisper model
    temp = asr(out_file, chunk_length_s=20)
    text = temp["text"]

    # we can do this at the end to release GPU memory
    del asr
    torch.cuda.empty_cache()

    return text

# 1.2.1 - api_transcribe
def transcribe_yt_vid_api(url, api_token):
    # download YouTube video's audio
    yt = YouTube(str(url))
    audio = yt.streams.filter(only_audio=True).first()
    out_file = audio.download(filename="audio.wav", output_path=save_dir)

    # Initialize client for the Whisper model
    client = InferenceClient(model=transcription_model_id, token=api_token)

    import librosa
    import soundfile as sf

    text = ""
    t = 25  # audio chunk length in seconds
    x, sr = librosa.load(out_file, sr=None)
    # This gives x as audio file in numpy array and sr as original sampling rate
    # The audio needs to be split in 20 second chunks since the API call truncates the response
    for _, i in enumerate(range(0, (len(x) // (t * sr)) + 1)):
        y = x[t * sr * i : t * sr * (i + 1)]
        split_path = os.path.join(save_dir, "audio_split.wav")
        sf.write(split_path, y, sr)
        text += client.automatic_speech_recognition(split_path)

    return text


# 1.2.3 - transcribe locally or api
def transcribe_youtube_video(url, force_transcribe=False, use_api=False, api_token=None):

    yt = YouTube(str(url))
    text = ""
    # get the transcript from YouTube if available
    try:
        text = get_yt_transcript(url)
    except:
        pass

    # transcribes the video if YouTube did not provide a transcription
    # or if you want to force_transcribe anyway
    if text == "" or force_transcribe:
        if use_api:
            text = transcribe_yt_vid_api(url, api_token=api_token)
            transcript_source = "The transcript was generated using {} via the Hugging Face Hub API.".format(
                transcription_model_id
            )
        else:
            text = transcribe_yt_vid(url)
            transcript_source = (
                "The transcript was generated using {} hosted locally.".format(
                    transcription_model_id
                )
            )
    else:
        transcript_source = "The transcript was downloaded from YouTube."

    return yt.title, text, transcript_source


# 1.3 - turn to paragraph or points
def turn_to_paragraph(text):
    # REMOVE HTML TAGS
    from bs4 import BeautifulSoup

    # Parse the HTML text
    soup = BeautifulSoup(text, "html.parser")
    # Get the text without HTML tags
    text = soup.get_text()  # print(text_without_tags)

    # Remove leading and trailing whitespaces
    text = text.strip()
    # Check if the string ends with "User" and remove it
    if text.endswith("User"):
        text = text[: -len("User")]
    # Replace dashes and extra whitespaces with spaces
    text = (
        text.replace(" -", "")
        .replace("  ", "")
        .replace("\n", " ")
        .replace("- ", "")
        .replace("`", "")
    )
    # text = text.replace("  ", "\n\n") # to keep second paragraph if it exists # sometime it's good to turn this on. but let's keep it off
    text = text.replace("  ", " ")  # off this if ^ is on

    return text


# 1.3.1
def turn_to_points(text):  # input must be from `turn_to_paragraph()`
    # text = text.replace(". ", ".\n-") # to keep second paragraph if it exists
    text_with_dashes = ".\n".join("- " + line.strip() for line in text.split(". "))
    text_with_dashes = text_with_dashes.replace("\n\n", "\n\n- ")  # for first sentence of new paragraph
    return text_with_dashes

# 1.3.2 - combined funtions above for paragraph_or_points
def paragraph_or_points(text, pa_or_po):
    if pa_or_po == "Points":
        return turn_to_points(turn_to_paragraph(text))
    else:  # default is Paragraph
        return turn_to_paragraph(text)

# 1.4 - summarization
def summarize_text(title, text, temperature, words, use_api=False, api_token=None, do_sample=False, length="Short", pa_or_po="Paragraph",):

    from langchain.chains.llm import LLMChain
    from langchain.prompts import PromptTemplate
    from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
    from langchain.chains.combine_documents.stuff import StuffDocumentsChain
    import torch
    import transformers
    from transformers import BitsAndBytesConfig
    from transformers import AutoTokenizer, AutoModelForCausalLM

    from langchain import HuggingFacePipeline
    import torch

    model_kwargs1 = {
        "temperature": temperature,
        "do_sample": do_sample,
        "min_new_tokens": 200 - 25,
        "max_new_tokens": 200 + 25,
        "repetition_penalty": 20.0,
    }
    model_kwargs2 = {
        "temperature": temperature,
        "do_sample": do_sample,
        "min_new_tokens": words,
        "max_new_tokens": words + 100,
        "repetition_penalty": 20.0,
    }
    if not do_sample:
        del model_kwargs1["temperature"]
        del model_kwargs2["temperature"]

    if use_api:

        from langchain import HuggingFaceHub

        # os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
        llm = HuggingFaceHub(
            repo_id=llm_model_id,
            model_kwargs=model_kwargs1,
            huggingfacehub_api_token=api_token,
        )
        llm2 = HuggingFaceHub(
            repo_id=llm_model_id,
            model_kwargs=model_kwargs2,
            huggingfacehub_api_token=api_token,
        )
        summary_source = (
            "The summary was generated using {} via Hugging Face API.".format(
                llm_model_id
            )
        )

    else:
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True,
        )

        tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
        model = AutoModelForCausalLM.from_pretrained(
            llm_model_id,
            # quantization_config=quantization_config
        )
        model.to_bettertransformer()

        pipeline = transformers.pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            pad_token_id=tokenizer.eos_token_id,
            **model_kwargs1,
        )
        pipeline2 = transformers.pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            torch_dtype=torch.bfloat16,
            device_map="auto",
            pad_token_id=tokenizer.eos_token_id,
            **model_kwargs2,
        )
        llm = HuggingFacePipeline(pipeline=pipeline)
        llm2 = HuggingFacePipeline(pipeline=pipeline2)

        summary_source = "The summary was generated using {} hosted locally.".format(
            llm_model_id
        )

    # Map
    map_template = """
    Summarize the following video in a clear way:\n
    ----------------------- \n
    TITLE: `{title}`\n
    TEXT:\n
    `{docs}`\n
    ----------------------- \n
    SUMMARY:\n
    """
    map_prompt = PromptTemplate(
        template=map_template, input_variables=["title", "docs"]
    )
    map_chain = LLMChain(llm=llm, prompt=map_prompt)

    # Reduce - Collapse
    collapse_template = """
    TITLE: `{title}`\n
    TEXT:\n
    `{doc_summaries}`\n
    ----------------------- \n
    Turn the text of a video above into a long essay:\n
    """

    collapse_prompt = PromptTemplate(
        template=collapse_template, input_variables=["title", "doc_summaries"]
    )
    collapse_chain = LLMChain(llm=llm, prompt=collapse_prompt)  # LLM 1 <-- LLM

    # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
    collapse_documents_chain = StuffDocumentsChain(
        llm_chain=collapse_chain, document_variable_name="doc_summaries"
    )

    # Final Reduce - Combine
    combine_template_short = """\n
    TITLE: `{title}`\n
    TEXT:\n
    `{doc_summaries}`\n
    ----------------------- \n
    Turn the text of a video above into a 3-sentence summary:\n
    """
    combine_template_medium = """\n
    TITLE: `{title}`\n
    TEXT:\n
    `{doc_summaries}`\n
    ----------------------- \n
    Turn the text of a video above into a long summary:\n
    """
    combine_template_long = """\n
    TITLE: `{title}`\n
    TEXT:\n
    `{doc_summaries}`\n
    ----------------------- \n
    Turn the text of a video above into a long essay:\n
    """
    # Turn the text of a video above into a 3-sentence summary:\n
    # Turn the text of a video above into a long summary:\n
    # Turn the text of a video above into a long essay:\n
    if length == "Medium":
        combine_prompt = PromptTemplate(
            template=combine_template_medium,
            input_variables=["title", "doc_summaries", "words"],
        )
    elif length == "Long":
        combine_prompt = PromptTemplate(
            template=combine_template_long,
            input_variables=["title", "doc_summaries", "words"],
        )
    else:  # default is short
        combine_prompt = PromptTemplate(
            template=combine_template_short,
            input_variables=["title", "doc_summaries", "words"],
        )
    combine_chain = LLMChain(llm=llm2, prompt=combine_prompt)  # LLM 2 <-- LLM2

    # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
    combine_documents_chain = StuffDocumentsChain(
        llm_chain=combine_chain, document_variable_name="doc_summaries"
    )

    # Combines and iteratively reduces the mapped documents
    reduce_documents_chain = ReduceDocumentsChain(
        # This is final chain that is called.
        combine_documents_chain=combine_documents_chain,
        # If documents exceed context for `StuffDocumentsChain`
        collapse_documents_chain=collapse_documents_chain,
        # The maximum number of tokens to group documents into.
        token_max=800,
    )

    # Combining documents by mapping a chain over them, then combining results
    map_reduce_chain = MapReduceDocumentsChain(
        # Map chain
        llm_chain=map_chain,
        # Reduce chain
        reduce_documents_chain=reduce_documents_chain,
        # The variable name in the llm_chain to put the documents in
        document_variable_name="docs",
        # Return the results of the map steps in the output
        return_intermediate_steps=False,
    )

    from langchain.document_loaders import TextLoader
    from langchain.text_splitter import TokenTextSplitter

    with open(save_dir + "/transcript.txt", "w") as f:
        f.write(text)
    loader = TextLoader(save_dir + "/transcript.txt")
    doc = loader.load()
    text_splitter = TokenTextSplitter(chunk_size=800, chunk_overlap=100)
    docs = text_splitter.split_documents(doc)

    summary = map_reduce_chain.run(
        {"input_documents": docs, "title": title, "words": words}
    )

    try:
        del (map_reduce_chain, reduce_documents_chain,
            combine_chain, collapse_documents_chain,
            map_chain, collapse_chain,
            llm, llm2,
            pipeline, pipeline2,
            model, tokenizer)
    except:
        pass
    torch.cuda.empty_cache()

    summary = paragraph_or_points(summary, pa_or_po)

    return summary, summary_source


# 1.5 - complete function [DELETED]

# 2 - extractive/low-abstractive summary for Key Sentence Highlight
# 2.1 - chunking + hosted inference, summary [DELETED]

# 2.2 - add spaces between punctuations
import re
def add_space_before_punctuation(text):
    # Define a regular expression pattern to match punctuation
    punctuation_pattern = r"([.,!?;:])"

    # Use re.sub to add a space before each punctuation
    modified_text = re.sub(punctuation_pattern, r" \1", text)

    bracket_pattern = r'([()])'
    modified_text = re.sub(bracket_pattern, r" \1 ", modified_text)

    return modified_text


# 2.3 - highlight same words (yellow)
from difflib import ndiff
def highlight_text_with_diff(text1, text2):
    diff = list(ndiff(text1.split(), text2.split()))

    highlighted_diff = []
    for item in diff:
        if item.startswith(" "):
            highlighted_diff.append(
                '<span style="background-color: rgba(255, 255, 0, 0.25);">'
                + item
                + " </span>"
            )  # Unchanged words
        elif item.startswith("+"):
            highlighted_diff.append(item[2:] + " ")

    return "".join(highlighted_diff) # output in string HTML format

# 2.4 - combined - `highlight_key_sentences`
#   extractive/low-abstractive summarizer with facebook/bart-large-cnn
#   highlight feature
def highlight_key_sentences(original_text, api_key):

    import requests

    API_TOKEN = api_key
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"

    def query(payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()

    def chunk_text(text, chunk_size=1024):
        # Split the text into chunks
        chunks = [text[i : i + chunk_size] for i in range(0, len(text), chunk_size)]
        return chunks

    def summarize_long_text(long_text):
        # Split the long text into chunks
        text_chunks = chunk_text(long_text)

        # Summarize each chunk
        summaries = []
        for chunk in text_chunks:
            data = query(
                {
                    "inputs": f"{chunk}",
                    "parameters": {"do_sample": False},
                }
            )  # what if do_sample=True?
            summaries.append(data[0]["summary_text"])

        # Combine the summaries of all chunks
        full_summary = " ".join(summaries)
        return full_summary

    summarized_text = summarize_long_text(original_text)

    original_text = add_space_before_punctuation(original_text)
    summarized_text = add_space_before_punctuation(summarized_text)

    return highlight_text_with_diff(summarized_text, original_text)  # output in string HTML format


# 3 - extract_keywords
# 3.1 - initialize & load pipeline
from transformers import (
    TokenClassificationPipeline,
    AutoModelForTokenClassification,
    AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np

# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
    def __init__(self, model, *args, **kwargs):
        super().__init__(
            model=AutoModelForTokenClassification.from_pretrained(model),
            tokenizer=AutoTokenizer.from_pretrained(model),
            *args,
            **kwargs,
        )

    def postprocess(self, all_outputs):
        results = super().postprocess(
            all_outputs=all_outputs,
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )
        return np.unique([result.get("word").strip() for result in results])


# Load pipeline
model_name = "ml6team/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=model_name)

# 3.2 - re-arrange keywords order
import re
def rearrange_keywords(text, keywords):  # text:str, keywords:List
    # Find the positions of each keyword in the text
    keyword_positions = {word: text.lower().index(word.lower()) for word in keywords}

    # Sort the keywords based on their positions in the text
    sorted_keywords = sorted(keywords, key=lambda x: keyword_positions[x])

    return sorted_keywords

# 3.3 - `keywords_extractor` function
def keywords_extractor_list(summary):  # List  : Flashcards
    keyphrases = extractor(summary)  # extractor() from above | text.replace("\n", " ")
    list_keyphrases = keyphrases.tolist()

    # rearrange first
    list_keyphrases = rearrange_keywords(summary, list_keyphrases)

    return list_keyphrases  # returns List

def keywords_extractor_str(summary):  # str   : Keywords Highlight & Fill in the Blank
    keyphrases = extractor(summary)  # extractor() from above | text.replace("\n", " ")
    list_keyphrases = keyphrases.tolist()

    # rearrange first
    list_keyphrases = rearrange_keywords(summary, list_keyphrases)

    # join List elements to one string
    all_keyphrases = " ".join(list_keyphrases)

    return all_keyphrases  # returns one string

# 3.4 - keywords highlight
# 3.4.1 - highlight same words (green)
def highlight_green(text1, text2):  # keywords(str), text
    diff = list(ndiff(text1.split(), text2.split()))

    highlighted_diff = []
    for item in diff:
        if item.startswith(" "):
            highlighted_diff.append(
                '<span style="background-color: rgba(0, 255, 0, 0.25);">'
                + item
                + " </span>"
            )  # Unchanged words
        elif item.startswith("+"):
            highlighted_diff.append(item[2:] + " ")

    return "".join(highlighted_diff) # output in string HTML format


# 3.4.2 - combined - keywords highlight
def keywords_highlight(text):
    keywords = keywords_extractor_str(text) # keywords; one string
    text = add_space_before_punctuation(text)
    return highlight_green(keywords, text) # output in string HTML format


# 3.5 - flashcards
# 3.5.1 - pair_keywords_sentences
def pair_keywords_sentences(text, search_words):  # text:str, search_words:List

    result_html = "<span style='text-align: center;'>"

    # Split the text into sentences
    sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s", text)

    # Create a dictionary to store sentences for each keyword
    keyword_sentences = {word: [] for word in search_words}

    # Iterate through sentences and search for keywords
    for sentence in sentences:
        for word in search_words:
            if re.search(
                r"\b{}\b".format(re.escape(word)), sentence, flags=re.IGNORECASE
            ):
                keyword_sentences[word].append(sentence)

    # Print the results
    for word, sentences in keyword_sentences.items():
        result_html += "<h2>" + word + "</h2> \n"

        for sentence in sentences:
            result_html += "<p>" + sentence + "</p> \n"

        result_html += "\n"

    result_html += "</span>"

    return result_html

# 3.5.2 combined - flashcards
def flashcards(text):
    keywords = keywords_extractor_list(text) # keywords; a List
    text = add_space_before_punctuation(text)
    return pair_keywords_sentences(text, keywords) # output in string HTML format


# 3.6 - fill in the blank
# 3.6.1 - underline same words
def underline_keywords(text1, text2):  # keywords(str), text
    diff = list(ndiff(text1.split(), text2.split()))

    highlighted_diff = []
    for item in diff:
        if item.startswith(" "):
            highlighted_diff.append(
                "_______"
            )  # Unchanged words. make length independent of word length?
        elif item.startswith("+"):
            highlighted_diff.append(item[2:] + " ")

    return "".join(highlighted_diff) # output in string HTML format


# 3.6.2 - combined - underline
def fill_in_blanks(text):
    keywords = keywords_extractor_str(text)  # keywords; one string
    text = add_space_before_punctuation(text)
    return underline_keywords(keywords, text)  # output in string HTML format


# 4 - misc
emptyTabHTML = "<br>\n<p style='color: gray; text-align: center'>Please generate a summary first.</p>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n"


def empty_tab():
    return emptyTabHTML


# 5 - the app
import gradio as gr

with gr.Blocks() as demo:
    gr.Markdown("<br>")

    with gr.Row():
        with gr.Column():
            gr.Markdown("# ✍️ Summarizer for Learning")
        with gr.Column():
            gr.HTML("<div style='color: red; text-align: right'>Please use your <a href='#HFAPI' style='color: red'>Hugging Face Access Token.</a></div>")

    with gr.Row():
        with gr.Column():
            with gr.Tab("YouTube"):
                yt_link = gr.Textbox(show_label=False, placeholder="Insert YouTube link here ... (video needs to have caption)")
                yt_transcript = gr.Textbox(show_label=False, placeholder="Transcript will be shown here ...", lines=12)
            with gr.Tab("Article"):
                gr.Textbox(show_label=False, placeholder="WORK IN PROGRESS", interactive=False)
                gr.Textbox(show_label=False, placeholder="", lines=12, interactive=False)
            with gr.Tab("Text"):
                gr.Dropdown(["WORK IN PROGRESS", "Example 2"], show_label=False, value="WORK IN PROGRESS", interactive=False)
                gr.Textbox(show_label=False, placeholder="", lines=12, interactive=False)
            with gr.Row():
                clrButton = gr.ClearButton([yt_link, yt_transcript])
                subButton = gr.Button(variant="primary", value="Summarize")

            with gr.Accordion("Settings", open=False):
                length = gr.Radio(["Short", "Medium", "Long"], label="Length", value="Short", interactive=True)
                pa_or_po = gr.Radio(["Paragraphs", "Points"], label="Summarize to", value="Paragraphs", interactive=True)
                gr.Checkbox(label="Add headings", interactive=False)
                gr.Radio(["One section", "Few sections"], label="Summarize into", interactive=False)  # info="Only for 'Medium' or 'Long'"
                with gr.Row():
                    clrButtonSt1 = gr.ClearButton([length, pa_or_po], interactive=True)
                    subButtonSt1 = gr.Button(value="Set Current as Default", interactive=False)
                    subButtonSt1 = gr.Button(value="Show Default", interactive=False)

            with gr.Accordion("Advanced Settings", open=False):
                with gr.Group(visible=False):
                    gr.HTML("<p style='text-align: center;'>&nbsp; YouTube transcription</p>")
                    force_transcribe_with_app = gr.Checkbox(
                        label="Always transcribe with app",
                        info="The app first checks if caption on YouTube is available. If ticked, the app will transcribe the video for you but slower.",
                    )
                with gr.Group():
                    gr.HTML("<p style='text-align: center;'>&nbsp; Summarization</p>")
                    gr.Radio(["High Abstractive", "Low Abstractive", "Extractive"], label="Type of summarization", value="High Abstractive", interactive=False)
                    gr.Dropdown(
                        [
                            "tiiuae/falcon-7b-instruct",
                            "GPT2 (work in progress)",
                            "OpenChat 3.5 (work in progress)",
                        ],
                        label="Model",
                        value="tiiuae/falcon-7b-instruct",
                        interactive=False,
                    )
                    temperature = gr.Slider(0.10, 0.30, step=0.05, label="Temperature", value=0.15,
                        info="Temperature is limited to 0.1 ~ 0.3 window, as it is shown to produce best result.",
                        interactive=True,
                    )
                    do_sample = gr.Checkbox(label="do_sample", value=True,
                        info="If ticked, do_sample produces more creative and diverse text, otherwise the app will use greedy decoding that generate more consistent and predictable summary.",
                    )

                with gr.Group():
                    gr.HTML("<p style='text-align: center;'>&nbsp; Highlight</p>")
                    check_key_sen = gr.Checkbox(label="Highlight key sentences", info="In original text", value=True, interactive=False)
                    gr.Checkbox(label="Highlight keywords", info="In summary", value=True, interactive=False)
                    gr.Checkbox(label="Turn text to paragraphs", interactive=False)

                with gr.Group():
                    gr.HTML("<p style='text-align: center;'>&nbsp; Quiz mode</p>")
                    gr.Checkbox(label="Fill in the blanks", value=True, interactive=False)
                    gr.Checkbox(label="Flashcards", value=True, interactive=False)
                    gr.Checkbox(label="Re-write summary", interactive=False)  # info="Only for 'Short'"

                with gr.Row():
                    clrButtonSt2 = gr.ClearButton(interactive=True)
                    subButtonSt2 = gr.Button(value="Set Current as Default", interactive=False)
                    subButtonSt2 = gr.Button(value="Show Default", interactive=False)

        with gr.Column():
            with gr.Tab("Summary"):  # Output
                title = gr.Textbox(show_label=False, placeholder="Title")
                summary = gr.Textbox(lines=11, show_copy_button=True, label="", placeholder="Summarized output ...")
            with gr.Tab("Key sentences", render=True):
                key_sentences = gr.HTML(emptyTabHTML)
                showButtonKeySen = gr.Button(value="Generate")
            with gr.Tab("Keywords", render=True):
                keywords = gr.HTML(emptyTabHTML)
                showButtonKeyWor = gr.Button(value="Generate")
            with gr.Tab("Fill in the blank", render=True):
                blanks = gr.HTML(emptyTabHTML)
                showButtonFilBla = gr.Button(value="Generate")
            with gr.Tab("Flashcards", render=True):
                flashCrd = gr.HTML(emptyTabHTML)
                showButtonFlash = gr.Button(value="Generate")
            gr.Markdown("<span style='color: gray'>The app is a work in progress. Output may be odd and some features are disabled. [Learn more](https://huggingface.co/spaces/reflection777/summarizer-for-learning/blob/main/README.md).</span>")
            with gr.Group():
                gr.HTML("<p id='HFAPI' style='text-align: center;'>&nbsp; 🤗 Hugging Face Access Token [<a href='https://huggingface.co/settings/tokens'>more</a>]</p>")
                hf_access_token = gr.Textbox(
                    show_label=False,
                    placeholder="example: hf_******************************",
                    type="password",
                    info="The app does not store the token.",
                )
            with gr.Accordion("Info", open=False, visible=False):
                transcript_source = gr.Textbox(show_label=False, placeholder="transcript_source")
                summary_source = gr.Textbox(show_label=False, placeholder="summary_source")
                words = gr.Slider(minimum=100, maximum=500, value=250, label="Length of the summary")
                # words: what should be the constant value?
                use_api = gr.Checkbox(label="use_api", value=True)

            subButton.click(
                fn=transcribe_youtube_video,
                inputs=[yt_link, force_transcribe_with_app, use_api, hf_access_token],
                outputs=[title, yt_transcript, transcript_source],
                queue=True,
            ).then(
                fn=summarize_text,
                inputs=[title, yt_transcript, temperature, words, use_api, hf_access_token, do_sample, length, pa_or_po],
                outputs=[summary, summary_source],
                api_name="summarize_text",
                queue=True,
            )

            subButton.click(fn=empty_tab, outputs=[key_sentences])
            subButton.click(fn=empty_tab, outputs=[keywords])
            subButton.click(fn=empty_tab, outputs=[flashCrd])
            subButton.click(fn=empty_tab, outputs=[blanks])

            showButtonKeySen.click(
                fn=highlight_key_sentences,
                inputs=[yt_transcript, hf_access_token],
                outputs=[key_sentences],
                queue=True,
            )

            # Keywords
            showButtonKeyWor.click(fn=keywords_highlight, inputs=[summary], outputs=[keywords], queue=True)

            # Flashcards
            showButtonFlash.click(fn=flashcards, inputs=[summary], outputs=[flashCrd], queue=True)

            # Fill in the blanks
            showButtonFilBla.click(fn=fill_in_blanks, inputs=[summary], outputs=[blanks], queue=True)
    
    gr.Examples(
        examples=["https://www.youtube.com/watch?v=P6FORpg0KVo", "https://www.youtube.com/watch?v=bwEIqjU2qgk"],
        inputs=[yt_link]
    )

if __name__ == "__main__":
    demo.launch(show_api=False)
    # demo.launch(show_api=False, debug=True)
    # demo.launch(show_api=False, share=True)