File size: 30,258 Bytes
74b5695 aa0a99f 74b5695 aa0a99f 74b5695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
# 0- libraries
import transformers
import gradio as gr
from youtube_transcript_api import YouTubeTranscriptApi
from huggingface_hub import InferenceClient
from pytube import YouTube
import pytube
import torch
# 1 - abstractive_summary
# 1.1 - initialize
import os
save_dir = os.path.join(os.getcwd(), "docs")
if not os.path.exists(save_dir):
os.mkdir(save_dir)
transcription_model_id = "openai/whisper-large"
llm_model_id = "tiiuae/falcon-7b-instruct"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# 1.2 - transcription
def get_yt_transcript(url):
text = ""
vid_id = pytube.extract.video_id(url)
temp = YouTubeTranscriptApi.get_transcript(vid_id)
for t in temp:
text += t["text"] + " "
return text
# 1.2.1 - locally_transcribe
def transcribe_yt_vid(url):
# download YouTube video's audio
yt = YouTube(str(url))
audio = yt.streams.filter(only_audio=True).first()
out_file = audio.download(filename="audio.mp3", output_path=save_dir)
# defining an automatic-speech-recognition pipeline
asr = transformers.pipeline(
"automatic-speech-recognition",
model=transcription_model_id,
device_map="auto",
)
# setting model config parameters
asr.model.config.forced_decoder_ids = asr.tokenizer.get_decoder_prompt_ids(
language="en", task="transcribe"
)
# invoking the Whisper model
temp = asr(out_file, chunk_length_s=20)
text = temp["text"]
# we can do this at the end to release GPU memory
del asr
torch.cuda.empty_cache()
return text
# 1.2.1 - api_transcribe
def transcribe_yt_vid_api(url, api_token):
# download YouTube video's audio
yt = YouTube(str(url))
audio = yt.streams.filter(only_audio=True).first()
out_file = audio.download(filename="audio.wav", output_path=save_dir)
# Initialize client for the Whisper model
client = InferenceClient(model=transcription_model_id, token=api_token)
import librosa
import soundfile as sf
text = ""
t = 25 # audio chunk length in seconds
x, sr = librosa.load(out_file, sr=None)
# This gives x as audio file in numpy array and sr as original sampling rate
# The audio needs to be split in 20 second chunks since the API call truncates the response
for _, i in enumerate(range(0, (len(x) // (t * sr)) + 1)):
y = x[t * sr * i : t * sr * (i + 1)]
split_path = os.path.join(save_dir, "audio_split.wav")
sf.write(split_path, y, sr)
text += client.automatic_speech_recognition(split_path)
return text
# 1.2.3 - transcribe locally or api
def transcribe_youtube_video(url, force_transcribe=False, use_api=False, api_token=None):
yt = YouTube(str(url))
text = ""
# get the transcript from YouTube if available
try:
text = get_yt_transcript(url)
except:
pass
# transcribes the video if YouTube did not provide a transcription
# or if you want to force_transcribe anyway
if text == "" or force_transcribe:
if use_api:
text = transcribe_yt_vid_api(url, api_token=api_token)
transcript_source = "The transcript was generated using {} via the Hugging Face Hub API.".format(
transcription_model_id
)
else:
text = transcribe_yt_vid(url)
transcript_source = (
"The transcript was generated using {} hosted locally.".format(
transcription_model_id
)
)
else:
transcript_source = "The transcript was downloaded from YouTube."
return yt.title, text, transcript_source
# 1.3 - turn to paragraph or points
def turn_to_paragraph(text):
# REMOVE HTML TAGS
from bs4 import BeautifulSoup
# Parse the HTML text
soup = BeautifulSoup(text, "html.parser")
# Get the text without HTML tags
text = soup.get_text() # print(text_without_tags)
# Remove leading and trailing whitespaces
text = text.strip()
# Check if the string ends with "User" and remove it
if text.endswith("User"):
text = text[: -len("User")]
# Replace dashes and extra whitespaces with spaces
text = (
text.replace(" -", "")
.replace(" ", "")
.replace("\n", " ")
.replace("- ", "")
.replace("`", "")
)
# text = text.replace(" ", "\n\n") # to keep second paragraph if it exists # sometime it's good to turn this on. but let's keep it off
text = text.replace(" ", " ") # off this if ^ is on
return text
# 1.3.1
def turn_to_points(text): # input must be from `turn_to_paragraph()`
# text = text.replace(". ", ".\n-") # to keep second paragraph if it exists
text_with_dashes = ".\n".join("- " + line.strip() for line in text.split(". "))
text_with_dashes = text_with_dashes.replace("\n\n", "\n\n- ") # for first sentence of new paragraph
return text_with_dashes
# 1.3.2 - combined funtions above for paragraph_or_points
def paragraph_or_points(text, pa_or_po):
if pa_or_po == "Points":
return turn_to_points(turn_to_paragraph(text))
else: # default is Paragraph
return turn_to_paragraph(text)
# 1.4 - summarization
def summarize_text(title, text, temperature, words, use_api=False, api_token=None, do_sample=False, length="Short", pa_or_po="Paragraph",):
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains import ReduceDocumentsChain, MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
import torch
import transformers
from transformers import BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain import HuggingFacePipeline
import torch
model_kwargs1 = {
"temperature": temperature,
"do_sample": do_sample,
"min_new_tokens": 200 - 25,
"max_new_tokens": 200 + 25,
"repetition_penalty": 20.0,
}
model_kwargs2 = {
"temperature": temperature,
"do_sample": do_sample,
"min_new_tokens": words,
"max_new_tokens": words + 100,
"repetition_penalty": 20.0,
}
if not do_sample:
del model_kwargs1["temperature"]
del model_kwargs2["temperature"]
if use_api:
from langchain import HuggingFaceHub
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
llm = HuggingFaceHub(
repo_id=llm_model_id,
model_kwargs=model_kwargs1,
huggingfacehub_api_token=api_token,
)
llm2 = HuggingFaceHub(
repo_id=llm_model_id,
model_kwargs=model_kwargs2,
huggingfacehub_api_token=api_token,
)
summary_source = (
"The summary was generated using {} via Hugging Face API.".format(
llm_model_id
)
)
else:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
model = AutoModelForCausalLM.from_pretrained(
llm_model_id,
# quantization_config=quantization_config
)
model.to_bettertransformer()
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
pad_token_id=tokenizer.eos_token_id,
**model_kwargs1,
)
pipeline2 = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
device_map="auto",
pad_token_id=tokenizer.eos_token_id,
**model_kwargs2,
)
llm = HuggingFacePipeline(pipeline=pipeline)
llm2 = HuggingFacePipeline(pipeline=pipeline2)
summary_source = "The summary was generated using {} hosted locally.".format(
llm_model_id
)
# Map
map_template = """
Summarize the following video in a clear way:\n
----------------------- \n
TITLE: `{title}`\n
TEXT:\n
`{docs}`\n
----------------------- \n
SUMMARY:\n
"""
map_prompt = PromptTemplate(
template=map_template, input_variables=["title", "docs"]
)
map_chain = LLMChain(llm=llm, prompt=map_prompt)
# Reduce - Collapse
collapse_template = """
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a long essay:\n
"""
collapse_prompt = PromptTemplate(
template=collapse_template, input_variables=["title", "doc_summaries"]
)
collapse_chain = LLMChain(llm=llm, prompt=collapse_prompt) # LLM 1 <-- LLM
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
collapse_documents_chain = StuffDocumentsChain(
llm_chain=collapse_chain, document_variable_name="doc_summaries"
)
# Final Reduce - Combine
combine_template_short = """\n
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a 3-sentence summary:\n
"""
combine_template_medium = """\n
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a long summary:\n
"""
combine_template_long = """\n
TITLE: `{title}`\n
TEXT:\n
`{doc_summaries}`\n
----------------------- \n
Turn the text of a video above into a long essay:\n
"""
# Turn the text of a video above into a 3-sentence summary:\n
# Turn the text of a video above into a long summary:\n
# Turn the text of a video above into a long essay:\n
if length == "Medium":
combine_prompt = PromptTemplate(
template=combine_template_medium,
input_variables=["title", "doc_summaries", "words"],
)
elif length == "Long":
combine_prompt = PromptTemplate(
template=combine_template_long,
input_variables=["title", "doc_summaries", "words"],
)
else: # default is short
combine_prompt = PromptTemplate(
template=combine_template_short,
input_variables=["title", "doc_summaries", "words"],
)
combine_chain = LLMChain(llm=llm2, prompt=combine_prompt) # LLM 2 <-- LLM2
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
combine_documents_chain = StuffDocumentsChain(
llm_chain=combine_chain, document_variable_name="doc_summaries"
)
# Combines and iteratively reduces the mapped documents
reduce_documents_chain = ReduceDocumentsChain(
# This is final chain that is called.
combine_documents_chain=combine_documents_chain,
# If documents exceed context for `StuffDocumentsChain`
collapse_documents_chain=collapse_documents_chain,
# The maximum number of tokens to group documents into.
token_max=800,
)
# Combining documents by mapping a chain over them, then combining results
map_reduce_chain = MapReduceDocumentsChain(
# Map chain
llm_chain=map_chain,
# Reduce chain
reduce_documents_chain=reduce_documents_chain,
# The variable name in the llm_chain to put the documents in
document_variable_name="docs",
# Return the results of the map steps in the output
return_intermediate_steps=False,
)
from langchain.document_loaders import TextLoader
from langchain.text_splitter import TokenTextSplitter
with open(save_dir + "/transcript.txt", "w") as f:
f.write(text)
loader = TextLoader(save_dir + "/transcript.txt")
doc = loader.load()
text_splitter = TokenTextSplitter(chunk_size=800, chunk_overlap=100)
docs = text_splitter.split_documents(doc)
summary = map_reduce_chain.run(
{"input_documents": docs, "title": title, "words": words}
)
try:
del (map_reduce_chain, reduce_documents_chain,
combine_chain, collapse_documents_chain,
map_chain, collapse_chain,
llm, llm2,
pipeline, pipeline2,
model, tokenizer)
except:
pass
torch.cuda.empty_cache()
summary = paragraph_or_points(summary, pa_or_po)
return summary, summary_source
# 1.5 - complete function [DELETED]
# 2 - extractive/low-abstractive summary for Key Sentence Highlight
# 2.1 - chunking + hosted inference, summary [DELETED]
# 2.2 - add spaces between punctuations
import re
def add_space_before_punctuation(text):
# Define a regular expression pattern to match punctuation
punctuation_pattern = r"([.,!?;:])"
# Use re.sub to add a space before each punctuation
modified_text = re.sub(punctuation_pattern, r" \1", text)
return modified_text
# 2.3 - highlight same words (yellow)
from difflib import ndiff
def highlight_text_with_diff(text1, text2):
diff = list(ndiff(text1.split(), text2.split()))
highlighted_diff = []
for item in diff:
if item.startswith(" "):
highlighted_diff.append(
'<span style="background-color: rgba(255, 255, 0, 0.25);">'
+ item
+ " </span>"
) # Unchanged words
elif item.startswith("+"):
highlighted_diff.append(item[2:] + " ")
return "".join(highlighted_diff) # output in string HTML format
# 2.4 - combined - `highlight_key_sentences`
# extractive/low-abstractive summarizer with facebook/bart-large-cnn
# highlight feature
def highlight_key_sentences(original_text, api_key):
import requests
API_TOKEN = api_key
headers = {"Authorization": f"Bearer {API_TOKEN}"}
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def chunk_text(text, chunk_size=1024):
# Split the text into chunks
chunks = [text[i : i + chunk_size] for i in range(0, len(text), chunk_size)]
return chunks
def summarize_long_text(long_text):
# Split the long text into chunks
text_chunks = chunk_text(long_text)
# Summarize each chunk
summaries = []
for chunk in text_chunks:
data = query(
{
"inputs": f"{chunk}",
"parameters": {"do_sample": False},
}
) # what if do_sample=True?
summaries.append(data[0]["summary_text"])
# Combine the summaries of all chunks
full_summary = " ".join(summaries)
return full_summary
summarized_text = summarize_long_text(original_text)
original_text = add_space_before_punctuation(original_text)
summarized_text = add_space_before_punctuation(summarized_text)
return highlight_text_with_diff(summarized_text, original_text) # output in string HTML format
# 3 - extract_keywords
# 3.1 - initialize & load pipeline
from transformers import (
TokenClassificationPipeline,
AutoModelForTokenClassification,
AutoTokenizer,
)
from transformers.pipelines import AggregationStrategy
import numpy as np
# Define keyphrase extraction pipeline
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
def __init__(self, model, *args, **kwargs):
super().__init__(
model=AutoModelForTokenClassification.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs,
)
def postprocess(self, all_outputs):
results = super().postprocess(
all_outputs=all_outputs,
aggregation_strategy=AggregationStrategy.SIMPLE,
)
return np.unique([result.get("word").strip() for result in results])
# Load pipeline
model_name = "ml6team/keyphrase-extraction-kbir-inspec"
extractor = KeyphraseExtractionPipeline(model=model_name)
# 3.2 - re-arrange keywords order
import re
def rearrange_keywords(text, keywords): # text:str, keywords:List
# Find the positions of each keyword in the text
keyword_positions = {word: text.lower().index(word.lower()) for word in keywords}
# Sort the keywords based on their positions in the text
sorted_keywords = sorted(keywords, key=lambda x: keyword_positions[x])
return sorted_keywords
# 3.3 - `keywords_extractor` function
def keywords_extractor_list(summary): # List : Flashcards
keyphrases = extractor(summary) # extractor() from above | text.replace("\n", " ")
list_keyphrases = keyphrases.tolist()
# rearrange first
list_keyphrases = rearrange_keywords(summary, list_keyphrases)
return list_keyphrases # returns List
def keywords_extractor_str(summary): # str : Keywords Highlight & Fill in the Blank
keyphrases = extractor(summary) # extractor() from above | text.replace("\n", " ")
list_keyphrases = keyphrases.tolist()
# rearrange first
list_keyphrases = rearrange_keywords(summary, list_keyphrases)
# join List elements to one string
all_keyphrases = " ".join(list_keyphrases)
return all_keyphrases # returns one string
# 3.4 - keywords highlight
# 3.4.1 - highlight same words (green)
def highlight_green(text1, text2): # keywords(str), text
diff = list(ndiff(text1.split(), text2.split()))
highlighted_diff = []
for item in diff:
if item.startswith(" "):
highlighted_diff.append(
'<span style="background-color: rgba(0, 255, 0, 0.25);">'
+ item
+ " </span>"
) # Unchanged words
elif item.startswith("+"):
highlighted_diff.append(item[2:] + " ")
return "".join(highlighted_diff) # output in string HTML format
# 3.4.2 - combined - keywords highlight
def keywords_highlight(text):
keywords = keywords_extractor_str(text) # keywords; one string
text = add_space_before_punctuation(text)
return highlight_green(keywords, text) # output in string HTML format
# 3.5 - flashcards
# 3.5.1 - pair_keywords_sentences
def pair_keywords_sentences(text, search_words): # text:str, search_words:List
result_html = "<span style='text-align: center;'>"
# Split the text into sentences
sentences = re.split(r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s", text)
# Create a dictionary to store sentences for each keyword
keyword_sentences = {word: [] for word in search_words}
# Iterate through sentences and search for keywords
for sentence in sentences:
for word in search_words:
if re.search(
r"\b{}\b".format(re.escape(word)), sentence, flags=re.IGNORECASE
):
keyword_sentences[word].append(sentence)
# Print the results
for word, sentences in keyword_sentences.items():
result_html += "<h2>" + word + "</h2> \n"
for sentence in sentences:
result_html += "<p>" + sentence + "</p> \n"
result_html += "\n"
result_html += "</span>"
return result_html
# 3.5.2 combined - flashcards
def flashcards(text):
keywords = keywords_extractor_list(text) # keywords; a List
text = add_space_before_punctuation(text)
return pair_keywords_sentences(text, keywords) # output in string HTML format
# 3.6 - fill in the blank
# 3.6.1 - underline same words
def underline_keywords(text1, text2): # keywords(str), text
diff = list(ndiff(text1.split(), text2.split()))
highlighted_diff = []
for item in diff:
if item.startswith(" "):
highlighted_diff.append(
"_______"
) # Unchanged words. make length independent of word length?
elif item.startswith("+"):
highlighted_diff.append(item[2:] + " ")
return "".join(highlighted_diff) # output in string HTML format
# 3.6.2 - combined - underline
def fill_in_blanks(text):
keywords = keywords_extractor_str(text) # keywords; one string
text = add_space_before_punctuation(text)
return underline_keywords(keywords, text) # output in string HTML format
# 4 - misc
emptyTabHTML = "<br>\n<p style='color: gray; text-align: center'>Please generate a summary first.</p>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n<br>\n"
def empty_tab():
return emptyTabHTML
# 5 - the app
import gradio as gr
with gr.Blocks() as demo:
gr.Markdown("<br>")
with gr.Row():
with gr.Column():
gr.Markdown("# ✍️ Summarizer for Learning")
with gr.Column():
gr.HTML("<div style='color: red; text-align: right'>Please use your <a href='#HFAPI' style='color: red'>Hugging Face Access Token.</a></div>")
with gr.Row():
with gr.Column():
with gr.Tab("YouTube"):
yt_link = gr.Textbox(show_label=False, placeholder="Insert YouTube link here ...")
yt_transcript = gr.Textbox(show_label=False, placeholder="Transcript will be shown here ...", lines=12)
with gr.Tab("Article"):
gr.Textbox(show_label=False, placeholder="WORK IN PROGRESS", interactive=False)
gr.Textbox(show_label=False, placeholder="", lines=12, interactive=False)
with gr.Tab("Text"):
gr.Dropdown(["WORK IN PROGRESS", "Example 2"], show_label=False, value="WORK IN PROGRESS", interactive=False)
gr.Textbox(show_label=False, placeholder="", lines=12, interactive=False)
with gr.Row():
clrButton = gr.ClearButton([yt_link, yt_transcript])
subButton = gr.Button(variant="primary", value="Summarize")
with gr.Accordion("Settings", open=False):
length = gr.Radio(["Short", "Medium", "Long"], label="Length", value="Short", interactive=True)
pa_or_po = gr.Radio(["Paragraphs", "Points"], label="Summarize to", value="Paragraphs", interactive=True)
gr.Checkbox(label="Add headings", interactive=False)
gr.Radio(["One section", "Few sections"], label="Summarize into", interactive=False) # info="Only for 'Medium' or 'Long'"
with gr.Row():
clrButtonSt1 = gr.ClearButton([length, pa_or_po], interactive=True)
subButtonSt1 = gr.Button(value="Set Current as Default", interactive=False)
subButtonSt1 = gr.Button(value="Show Default", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
gr.HTML("<p style='text-align: center;'> YouTube transcription</p>")
force_transcribe_with_app = gr.Checkbox(
label="Always transcribe with app",
info="The app first checks if caption on YouTube is available. If ticked, the app will transcribe the video for you but slower.",
)
with gr.Group():
gr.HTML("<p style='text-align: center;'> Summarization</p>")
gr.Radio(["High Abstractive", "Low Abstractive", "Extractive"], label="Type of summarization", value="High Abstractive", interactive=False)
gr.Dropdown(
[
"tiiuae/falcon-7b-instruct",
"GPT2 (work in progress)",
"OpenChat 3.5 (work in progress)",
],
label="Model",
value="tiiuae/falcon-7b-instruct",
interactive=False,
)
temperature = gr.Slider(0.10, 0.30, step=0.05, label="Temperature", value=0.15,
info="Temperature is limited to 0.1 ~ 0.3 window, as it is shown to produce best result.",
interactive=True,
)
do_sample = gr.Checkbox(label="do_sample", value=True,
info="If ticked, do_sample produces more creative and diverse text, otherwise the app will use greedy decoding that generate more consistent and predictable summary.",
)
with gr.Group():
gr.HTML("<p style='text-align: center;'> Highlight</p>")
check_key_sen = gr.Checkbox(label="Highlight key sentences", info="In original text", value=True, interactive=False)
gr.Checkbox(label="Highlight keywords", info="In summary", value=True, interactive=False)
gr.Checkbox(label="Turn text to paragraphs", interactive=False)
with gr.Group():
gr.HTML("<p style='text-align: center;'> Quiz mode</p>")
gr.Checkbox(label="Fill in the blanks", value=True, interactive=False)
gr.Checkbox(label="Flashcards", value=True, interactive=False)
gr.Checkbox(label="Re-write summary", interactive=False) # info="Only for 'Short'"
with gr.Row():
clrButtonSt2 = gr.ClearButton(interactive=True)
subButtonSt2 = gr.Button(value="Set Current as Default", interactive=False)
subButtonSt2 = gr.Button(value="Show Default", interactive=False)
with gr.Column():
with gr.Tab("Summary"): # Output
title = gr.Textbox(show_label=False, placeholder="Title")
summary = gr.Textbox(lines=11, show_copy_button=True, label="", placeholder="Summarized output ...")
with gr.Tab("Key sentences", render=True):
key_sentences = gr.HTML(emptyTabHTML)
showButtonKeySen = gr.Button(value="Generate")
with gr.Tab("Keywords", render=True):
keywords = gr.HTML(emptyTabHTML)
showButtonKeyWor = gr.Button(value="Generate")
with gr.Tab("Fill in the blank", render=True):
blanks = gr.HTML(emptyTabHTML)
showButtonFilBla = gr.Button(value="Generate")
with gr.Tab("Flashcards", render=True):
flashCrd = gr.HTML(emptyTabHTML)
showButtonFlash = gr.Button(value="Generate")
gr.Markdown("<span style='color: gray'> The app is still a work in progress. The output may be odd and some features are still disabled. [Learn more]().</span>")
with gr.Group():
gr.HTML("<p id='HFAPI' style='text-align: center;'> 🤗 Hugging Face Access Token [<a href='https://huggingface.co/docs/hub/security-tokens'>more</a>]</p>")
hf_access_token = gr.Textbox(
show_label=False,
placeholder="example: hf_******************************",
type="password",
info="The app does not store the token.",
)
with gr.Accordion("Info", open=False, visible=False):
transcript_source = gr.Textbox(show_label=False, placeholder="transcript_source")
summary_source = gr.Textbox(show_label=False, placeholder="summary_source")
words = gr.Slider(minimum=100, maximum=500, value=250, label="Length of the summary")
# words: what should be the constant value?
use_api = gr.Checkbox(label="use_api", value=True)
subButton.click(
fn=transcribe_youtube_video,
inputs=[yt_link, force_transcribe_with_app, use_api, hf_access_token],
outputs=[title, yt_transcript, transcript_source],
queue=True,
).then(
fn=summarize_text,
inputs=[title, yt_transcript, temperature, words, use_api, hf_access_token, do_sample, length, pa_or_po],
outputs=[summary, summary_source],
api_name="summarize_text",
queue=True,
)
subButton.click(fn=empty_tab, outputs=[key_sentences])
subButton.click(fn=empty_tab, outputs=[keywords])
subButton.click(fn=empty_tab, outputs=[flashCrd])
subButton.click(fn=empty_tab, outputs=[blanks])
showButtonKeySen.click(
fn=highlight_key_sentences,
inputs=[yt_transcript, hf_access_token],
outputs=[key_sentences],
queue=True,
)
# Keywords
showButtonKeyWor.click(fn=keywords_highlight, inputs=[summary], outputs=[keywords], queue=True)
# Flashcards
showButtonFlash.click(fn=flashcards, inputs=[summary], outputs=[flashCrd], queue=True)
# Fill in the blanks
showButtonFilBla.click(fn=fill_in_blanks, inputs=[summary], outputs=[blanks], queue=True)
if __name__ == "__main__":
demo.launch(show_api=False)
# demo.launch(show_api=False, debug=True)
# demo.launch(show_api=False, share=True)
|