code-brush / app.py
Reshinth Adithyan
diff_utils commit
efc64b8
raw
history blame
2.01 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import difflib
import re
from utils import verify_diff, apply_diff_from_output
commit_message_per_brush = {
"Annotate Type": "annotate type to the variables.",
"Reformat" : "Reformat the code using pep8",
"Add Docstrings" : "Add docstrings to all the functions",
"Add Comments" : "Add inline comments to all the functions",
}
def load_model_and_tokenizer(model_name:str="CarperAI/diff-codegen-350M-v2"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return tokenizer, model
def make_prompt(code:str,task):
filename = "input.py"
prompt = f"<NME>main.py<BEF>{code}<MSG>{commit_message_per_brush[task]}."
return prompt
def generate_diff(code:str):
input_ids = tokenizer.encode(code, return_tensors='pt')
outputs = model.generate(input_ids, max_length=64,temperature=0.8,top_p=0.85)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def postprocess_output(generated_output:str):
return verify_diff(generated_output)
st.title("Code Brush")
st.write("A tool to brush up your code")
tokenizer,model = load_model_and_tokenizer()
with st.form("my_form"):
text = st.text_area("Enter your code here", height=150, value="def greet(input_name):\n return f'Hello, {input_name}'" )
brush_type = st.selectbox("Brush Type", ["Annotate Type", "Reformat", "Add Docstrings", "Add Comments"])
submit_button = st.form_submit_button("Submit")
if submit_button:
st.write("## Diff:")
generate_diff = generate_diff(make_prompt(text,brush_type))
after_file = apply_diff_from_output(generate_diff)
generate_diff_processed = postprocess_output(generate_diff)
st.write(after_file)
st.write(generate_diff_processed)
#st.text_area(generate_diff_processed)
#st.text_area(generate_diff, height=150, value=generate_diff)