Spaces:
Runtime error
Runtime error
File size: 1,582 Bytes
ab3f69e 991236b ab3f69e 226c1ac a83a01c 226c1ac f947788 8cd2bac 226c1ac ab3f69e 6c1e513 ab3f69e 6c1e513 a8ab360 ab3f69e 3ed4f5d ab3f69e 226c1ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_NAME = "reshinthadith/BashGPTNeo"
def load_model_and_tokenizer(model_name):
"""Adding load_model_and_tokenizer function to keep the model in the memory"""
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return tokenizer,model
tokenizer,model = load_model_and_tokenizer(MODEL_NAME)
MAX_TOKS = 128
MAX_NEW_TOKS = 128
def generate_text(prompt):
prompt = "<english> " + prompt + " <bash>"
inputs = tokenizer(prompt, truncation=True, return_tensors="pt")
output_seq = model.generate(
input_ids=inputs.input_ids, max_length=MAX_TOKS,
max_new_tokens=MAX_NEW_TOKS,
do_sample=True, temperature=0.8,
num_return_sequences=1
)
outputs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
outputs = outputs[0].split("<bash>")[-1]
return outputs
st.set_page_config(
page_title= "Code Representation Learning",
initial_sidebar_state= "expanded"
)
with st.footer():
st.write("work by Reshinth Adithyan & Aditya Thuruvas")
st.sidebar.title("Code Representation Learning")
workflow = st.sidebar.selectbox('select a task', ['Bash Synthesis'])
if workflow == "Bash Synthesis":
st.title("Program Synthesis for Bash")
prompt = st.text_input("Natural Language prompt ",'print all the files with ".cpp" extension')
button = st.button("synthesize")
if button:
generated_text = generate_text(prompt)
st.write(generated_text)
|