File size: 1,354 Bytes
ab3f69e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer


MODEL_NAME = "reshinthadith"
def load_model_and_tokenizer(model_name):
    """Adding load_model_and_tokenizer function to keep the model in the memory"""
    model = AutoModelForCausalLM.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    return tokenizer,model

tokenizer,model = load_model_and_tokenizer(MODEL_NAME)

st.set_page_config(
page_title= "Code Representation Learning",
    initial_sidebar_state= "expanded"
    )
st.sidebar.title("Code Representation Learning")
workflow = st.sidebar.selectbox('select a task', ['Bash Synthesis'])
if workflow == "Bash Synthesis":
    st.title("Program Synthesis for Bash")
    arxiv_id = st.text_input("Natural Language prompt ","list all the files in the directory 'data\' ")
    output_diction = {}
    button = st.button("synthesize")
if button:
    link_gen = r"https://arxiv.org/abs/"
    webbrowser.open_new_tab(link_gen+str(arxiv_id))
# Abstract 
    with st.beta_expander("Abstract"):
        st.write(output_diction["abstract"])
    with st.beta_expander("Influencing Citations"):
        st.write(output_diction["influenital_citations"])
    with st.beta_expander("Citation Graph"):
        print("")
elif workflow == "Rebuttal Analysis":
    st.title("Rebuttal Analysis")