File size: 19,022 Bytes
b11ac48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import os
import re
from typing import Dict, Iterable, List, Optional, Tuple
import json
import random
import argparse
from allennlp.data.fields.field import Field
from allennlp.data.fields.sequence_field import SequenceField
from allennlp.models.model import Model
from allennlp.nn.util import get_text_field_mask
from allennlp.predictors.predictor import Predictor

import pandas as pd
import spacy
import torch
from sklearn.preprocessing import MultiLabelBinarizer

from allennlp.common.util import pad_sequence_to_length
from allennlp.data import TextFieldTensors
from allennlp.data.vocabulary import Vocabulary
from allennlp.data import DatasetReader, TokenIndexer, Instance, Token
from allennlp.data.fields import TextField, LabelField
from allennlp.data.token_indexers.pretrained_transformer_indexer import (
    PretrainedTransformerIndexer,
)
from allennlp.data.tokenizers.pretrained_transformer_tokenizer import (
    PretrainedTransformerTokenizer,
)
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders.basic_text_field_embedder import (
    BasicTextFieldEmbedder,
)
from allennlp.modules.token_embedders.pretrained_transformer_embedder import (
    PretrainedTransformerEmbedder,
)
from allennlp.modules.seq2vec_encoders.bert_pooler import BertPooler
from allennlp.modules.seq2vec_encoders.cls_pooler import ClsPooler
from allennlp.training.checkpointer import Checkpointer
from allennlp.training.gradient_descent_trainer import GradientDescentTrainer
from allennlp.data.data_loaders.simple_data_loader import SimpleDataLoader
from allennlp.training.optimizers import AdamOptimizer
from allennlp.predictors.text_classifier import TextClassifierPredictor
from allennlp.training.callbacks.tensorboard import TensorBoardCallback
from torch import nn
from torch.nn.functional import binary_cross_entropy_with_logits


random.seed(1986)


SEQ_LABELS = ["humansMentioned", "vehiclesMentioned", "eventVerb", "activeEventVerb"]


# adapted from bert-for-framenet project
class SequenceMultiLabelField(Field):

    def __init__(self,
                 labels: List[List[str]],
                 sequence_field: SequenceField,
                 binarizer: MultiLabelBinarizer,
                 label_namespace: str
                 ):
        self.labels = labels
        self._indexed_labels = None
        self._label_namespace = label_namespace
        self.sequence_field = sequence_field
        self.binarizer = binarizer

    @staticmethod
    def retokenize_tags(tags: List[List[str]],
                    offsets: List[Tuple[int, int]],
                    wp_primary_token: str = "last",
                    wp_secondary_tokens: str = "empty",
                    empty_value=lambda: []
                    ) -> List[List[str]]:
        tags_per_wordpiece = [
            empty_value()  # [CLS]
        ]

        for i, (off_start, off_end) in enumerate(offsets):
            tag = tags[i]

            # put a tag on the first wordpiece corresponding to the word token
            # e.g. "hello" --> "he" + "##ll" + "##o" --> 2 extra tokens
            # TAGS: [..., TAG, None, None, ...]
            num_extra_tokens = off_end - off_start
            if wp_primary_token == "first":
                tags_per_wordpiece.append(tag)
            if wp_secondary_tokens == "repeat":
                tags_per_wordpiece.extend(num_extra_tokens * [tag])
            else:
                tags_per_wordpiece.extend(num_extra_tokens * [empty_value()])
            if wp_primary_token == "last":
                tags_per_wordpiece.append(tag)

        tags_per_wordpiece.append(empty_value())  # [SEP]

        return tags_per_wordpiece

    def count_vocab_items(self, counter: Dict[str, Dict[str, int]]):
        for label_list in self.labels:
            for label in label_list:
                counter[self._label_namespace][label] += 1

    def get_padding_lengths(self) -> Dict[str, int]:
        return {"num_tokens": self.sequence_field.sequence_length()}

    def index(self, vocab: Vocabulary):

        indexed_labels: List[List[int]] = []
        for sentence_labels in self.labels:
            sentence_indexed_labels = []
            for label in sentence_labels:
                try:
                    sentence_indexed_labels.append(
                        vocab.get_token_index(label, self._label_namespace))
                except KeyError:
                    print(f"[WARNING] Ignore unknown label {label}")
            indexed_labels.append(sentence_indexed_labels)
        self._indexed_labels = indexed_labels

    def as_tensor(self, padding_lengths: Dict[str, int]) -> torch.Tensor:

        # binarize
        binarized_seq = self.binarizer.transform(self._indexed_labels).tolist()

        # padding
        desired_num_tokens = padding_lengths["num_tokens"]
        padded_tags = pad_sequence_to_length(binarized_seq, desired_num_tokens,
                                             default_value=lambda: list(self.binarizer.transform([[]])[0]))

        tensor = torch.tensor(padded_tags, dtype=torch.float)
        return tensor

    def empty_field(self) -> 'Field':

        field = SequenceMultiLabelField(
            [], self.sequence_field.empty_field(), self.binarizer, self._label_namespace)
        field._indexed_labels = []
        return field


# adapted from bert-for-framenet project
class MultiSequenceLabelModel(Model):

    def __init__(self, embedder: PretrainedTransformerEmbedder, decoder_output_size: int, hidden_size: int, vocab: Vocabulary, embedding_size: int = 768):
        super().__init__(vocab)
        self.embedder = embedder
        self.out_features = decoder_output_size
        self.hidden_size = hidden_size
        self.layers = nn.Sequential(
            nn.Linear(in_features=embedding_size,
                      out_features=self.hidden_size),
            nn.ReLU(),
            nn.Linear(in_features=self.hidden_size,
                      out_features=self.out_features)
        )

    def forward(self, tokens: TextFieldTensors, label: Optional[torch.FloatTensor] = None):
        embeddings = self.embedder(tokens["token_ids"])
        mask = get_text_field_mask(tokens).float()
        tag_logits = self.layers(embeddings)
        mask = mask.reshape(mask.shape[0], mask.shape[1], 1).repeat(1, 1, self.out_features)
        output = {"tag_logits": tag_logits}
        if label is not None:
            loss = binary_cross_entropy_with_logits(tag_logits, label, mask)
            output["loss"] = loss

    def get_metrics(self, _) -> Dict[str, float]:
        return {}

    def make_human_readable(self,
                                  prediction,
                                  label_namespace,
                                  threshold=0.2,
                                  sigmoid=True
                                  ) -> Tuple[List[str], Optional[List[float]]]:
        if sigmoid:
            prediction = torch.sigmoid(prediction)

        predicted_labels: List[List[str]] = [[] for _ in range(len(prediction))]

        # get all predictions with a positive probability
        for coord in torch.nonzero(prediction > threshold):
            label = self.vocab.get_token_from_index(int(coord[1]), label_namespace)
            predicted_labels[coord[0]].append(f"{label}:{prediction[coord[0], coord[1]]:.3f}")

        str_predictions: List[str] = []
        for label_list in predicted_labels:
            str_predictions.append("|".join(label_list) or "_")

        return str_predictions


class TrafficBechdelReader(DatasetReader):

    def __init__(self, token_indexers, tokenizer, binarizer):
        self.token_indexers = token_indexers
        self.tokenizer: PretrainedTransformerTokenizer = tokenizer
        self.binarizer = binarizer
        self.orig_data = []
        super().__init__()

    def _read(self, file_path) -> Iterable[Instance]:
        self.orig_data.clear()

        with open(file_path, encoding="utf-8") as f:
            for line in f:
                # skip any empty lines
                if not line.strip():
                    continue

                sentence_parts = line.lstrip("[").rstrip("]").split(",")
                token_txts = []
                token_mlabels = []
                
                for sp in sentence_parts:
                    sp_txt, sp_lbl_str = sp.split(":")
                    if sp_lbl_str == "[]":
                        sp_lbls = []
                    else:
                        sp_lbls = sp_lbl_str.lstrip("[").rstrip("]").split("|")
                    
                    # if the text is a WordNet thingy
                    wn_match = re.match(r"^(.+)-n-\d+$", sp_txt)
                    if wn_match:
                        sp_txt = wn_match.group(1)
                    
                    # multi-token text
                    sp_toks = sp_txt.split()
                    for tok in sp_toks:
                        token_txts.append(tok)
                        token_mlabels.append(sp_lbls)
                
                self.orig_data.append({
                    "sentence": token_txts,
                    "labels": token_mlabels,
                })
                yield self.text_to_instance(token_txts, token_mlabels)

    def text_to_instance(self, sentence: List[str], labels: List[List[str]] = None) -> Instance:
        tokens, offsets = self.tokenizer.intra_word_tokenize(sentence)

        text_field = TextField(tokens, self.token_indexers)
        fields = {"tokens": text_field}
        if labels is not None:
            labels_ = SequenceMultiLabelField.retokenize_tags(labels, offsets)
            label_field = SequenceMultiLabelField(labels_, text_field, self.binarizer, "labels")
            fields["label"] = label_field
        return Instance(fields)


def count_parties(sentence, lexical_dicts, nlp):

    num_humans = 0
    num_vehicles = 0

    def is_in_words(l, category):
        for subcategory, words in lexical_dicts[category].items():
            if subcategory.startswith("WN:"):
                words = [re.match(r"^(.+)-n-\d+$", w).group(1) for w in words]
            if l in words:
                return True
        return False

    doc = nlp(sentence.lower())
    for token in doc:
        lemma = token.lemma_
        if is_in_words(lemma, "persons"):
            num_humans += 1
        if is_in_words(lemma, "vehicles"):
            num_vehicles += 1

    return num_humans, num_vehicles


def predict_rule_based(annotations="data/crashes/bechdel_annotations_dev_first_25.csv"):
    data_crashes = pd.read_csv(annotations)
    with open("output/crashes/predict_bechdel/lexical_dicts.json", encoding="utf-8") as f:
        lexical_dicts = json.load(f)

    nlp = spacy.load("nl_core_news_md")

    for _, row in data_crashes.iterrows():
        sentence = row["sentence"]
        num_humans, num_vehicles = count_parties(sentence, lexical_dicts, nlp)
        print(sentence)
        print(f"\thumans={num_humans}, vehicles={num_vehicles}")


def evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_first_25.csv", out_file="output/crashes/predict_bechdel/predictions_crashes25.csv"):
    data_crashes = pd.read_csv(annotations)
    labels_crashes = [
        {
            "party_mentioned": str(row["mentioned"]),
            "party_human": str(row["as_human"]),
            "active": str(True) if str(row["active"]).lower() == "true" else str(False)
        }
        for _, row in data_crashes.iterrows()
    ]
    predictions_crashes = [predictor.predict(
        row["sentence"]) for i, row in data_crashes.iterrows()]
    crashes_out = []
    correct = 0
    partial_2_attrs = 0
    partial_1_attr = 0
    correct_mentions = 0
    correct_humans = 0
    correct_active = 0

    for sentence, label, prediction in zip(data_crashes["sentence"], labels_crashes, predictions_crashes):
        predicted = prediction["label"]
        if attrib == "all":
            gold = "|".join([f"{k}={v}" for k, v in label.items()])
        else:
            gold = label["attrib"]
        if gold == predicted:
            correct += 1
            if attrib == "all":
                partial_2_attrs += 1
                partial_1_attr += 1

        if attrib == "all":
            gold_attrs = set(gold.split("|"))
            pred_attrs = set(predicted.split("|"))
            if len(gold_attrs & pred_attrs) == 2:
                partial_2_attrs += 1
                partial_1_attr += 1
            elif len(gold_attrs & pred_attrs) == 1:
                partial_1_attr += 1

            if gold.split("|")[0] == predicted.split("|")[0]:
                correct_mentions += 1
            if gold.split("|")[1] == predicted.split("|")[1]:
                correct_humans += 1
            if gold.split("|")[2] == predicted.split("|")[2]:
                correct_active += 1

        crashes_out.append(
            {"sentence": sentence, "gold": gold, "prediction": predicted})

    print("ACC_crashes (strict) = ", correct/len(data_crashes))
    print("ACC_crashes (partial:2) = ", partial_2_attrs/len(data_crashes))
    print("ACC_crashes (partial:1) = ", partial_1_attr/len(data_crashes))
    print("ACC_crashes (mentions) = ", correct_mentions/len(data_crashes))
    print("ACC_crashes (humans) = ", correct_humans/len(data_crashes))
    print("ACC_crashes (active) = ", correct_active/len(data_crashes))

    pd.DataFrame(crashes_out).to_csv(out_file)


def filter_events_for_bechdel():

    with open("data/crashes/thecrashes_data_all_text.json", encoding="utf-8") as f:
        events = json.load(f)

    total_articles = 0
    data_out = []
    for ev in events:
        total_articles += len(ev["articles"])

        num_persons = len(ev["persons"])
        num_transport_modes = len({p["transportationmode"]
                                  for p in ev["persons"]})

        if num_transport_modes <= 2:
            for art in ev["articles"]:
                data_out.append({"event_id": ev["id"], "article_id": art["id"], "headline": art["title"],
                                "num_persons": num_persons, "num_transport_modes": num_transport_modes})

    print("Total articles = ", total_articles)

    print("Filtered articles: ", len(data_out))
    out_df = pd.DataFrame(data_out)
    out_df.to_csv("output/crashes/predict_bechdel/filtered_headlines.csv")


def train_and_eval(train=True):

    # use_gpu = False
    use_gpu = True
    cuda_device = None if use_gpu and torch.cuda.is_available() else -1

    transformer = "GroNLP/bert-base-dutch-cased"
    # transformer = "xlm-roberta-large"
    token_indexers = {"tokens": PretrainedTransformerIndexer(transformer)}
    tokenizer = PretrainedTransformerTokenizer(transformer)

    binarizer = MultiLabelBinarizer()
    binarizer.fit([SEQ_LABELS])
    reader = TrafficBechdelReader(token_indexers, tokenizer, binarizer)
    instances = list(reader.read("output/prolog/bechdel_headlines.txt"))
    orig_data = reader.orig_data
    zipped = list(zip(instances, orig_data))
    random.shuffle(zipped)
    instances_ = [i[0] for i in zipped]
    orig_data_ = [i[1] for i in zipped]

    num_dev = round(0.05 * len(instances_))
    num_test = round(0.25 * len(instances_))
    num_train = len(instances_) - num_dev - num_test
    print("LEN(train/dev/test)=", num_train, num_dev, num_test)

    instances_train = instances_[:num_train]
    instances_dev = instances_[num_train:num_train + num_dev]
    # instances_test = instances_[num_train+num_dev:num_train:]

    # orig_train = orig_data_[:num_train]
    orig_dev = orig_data_[num_train:num_train + num_dev]

    vocab = Vocabulary.from_instances(instances_train + instances_dev)

    embedder = BasicTextFieldEmbedder(
        {"tokens": PretrainedTransformerEmbedder(transformer)})
    model = MultiSequenceLabelModel(embedder, len(SEQ_LABELS), 1000, vocab)
    if use_gpu:
        model = model.cuda(cuda_device)

    # checkpoint_dir = f"output/crashes/predict_bechdel/model_{attrib}/"
    checkpoint_dir = f"/scratch/p289731/predict_bechdel/model_seqlabel/"
    serialization_dir = f"/scratch/p289731/predict_bechdel/serialization_seqlabel/"

    if train:
        os.makedirs(checkpoint_dir)
        os.makedirs(serialization_dir)
        tensorboard = TensorBoardCallback(
            serialization_dir, should_log_learning_rate=True)
        checkpointer = Checkpointer(serialization_dir=checkpoint_dir)
        optimizer = AdamOptimizer(
            [(n, p) for n, p in model.named_parameters() if p.requires_grad],
            lr=1e-5
        )
        train_loader = SimpleDataLoader(
            instances_train, batch_size=8, shuffle=True)
        dev_loader = SimpleDataLoader(
            instances_dev, batch_size=8, shuffle=False)
        train_loader.index_with(vocab)
        dev_loader.index_with(vocab)

        print("\t\tTraining BERT model")
        trainer = GradientDescentTrainer(
            model,
            optimizer,
            train_loader,
            validation_data_loader=dev_loader,
            # patience=32,
            patience=2,
            # num_epochs=1,
            checkpointer=checkpointer,
            cuda_device=cuda_device,
            serialization_dir=serialization_dir,
            callbacks=[tensorboard]
        )
        trainer.train()
    else:
        state_dict = torch.load(
            "/scratch/p289731/predict_bechdel/serialization_all/best.th", map_location=cuda_device)
        model.load_state_dict(state_dict)

    print("\t\tProducing predictions...")

    predictor = Predictor(model, reader)
    predictions_dev = [predictor.predict_instance(i) for i in instances_dev]

    data_out = []
    for sentence, prediction in zip(orig_dev, predictions_dev):
        readable = model.make_human_readable(prediction, "labels")
        text = sentence["sentence"]
        gold = sentence["labels"]
        predicted = readable
        data_out.append(
            {"sentence": text, "gold": gold, "predicted": predicted})
    df_out = pd.DataFrame(data_out)
    df_out.to_csv("output/crashes/predict_bechdel/predictions_dev.csv")

    # print()

    # print("First 25 crashes:")
    # evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_first_25.csv",
    #                  out_file="output/crashes/predict_bechdel/predictions_first_25.csv")
    # print()
    # print("Next 75 crashes:")
    # evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_next_75.csv",
    #                  out_file="output/crashes/predict_bechdel/predictions_next_75.csv")


if __name__ == "__main__":
    ap = argparse.ArgumentParser()
    ap.add_argument("action", choices=["train", "predict", "rules", "filter"])

    args = ap.parse_args()

    if args.action == "train":
        train_and_eval(train=True)
    elif args.action == "predict":
        train_and_eval(train=False)
    elif args.action == "rules":
        predict_rule_based()
    else:
        filter_events_for_bechdel()