Spaces:
Build error
Build error
File size: 19,022 Bytes
b11ac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import os
import re
from typing import Dict, Iterable, List, Optional, Tuple
import json
import random
import argparse
from allennlp.data.fields.field import Field
from allennlp.data.fields.sequence_field import SequenceField
from allennlp.models.model import Model
from allennlp.nn.util import get_text_field_mask
from allennlp.predictors.predictor import Predictor
import pandas as pd
import spacy
import torch
from sklearn.preprocessing import MultiLabelBinarizer
from allennlp.common.util import pad_sequence_to_length
from allennlp.data import TextFieldTensors
from allennlp.data.vocabulary import Vocabulary
from allennlp.data import DatasetReader, TokenIndexer, Instance, Token
from allennlp.data.fields import TextField, LabelField
from allennlp.data.token_indexers.pretrained_transformer_indexer import (
PretrainedTransformerIndexer,
)
from allennlp.data.tokenizers.pretrained_transformer_tokenizer import (
PretrainedTransformerTokenizer,
)
from allennlp.models import BasicClassifier
from allennlp.modules.text_field_embedders.basic_text_field_embedder import (
BasicTextFieldEmbedder,
)
from allennlp.modules.token_embedders.pretrained_transformer_embedder import (
PretrainedTransformerEmbedder,
)
from allennlp.modules.seq2vec_encoders.bert_pooler import BertPooler
from allennlp.modules.seq2vec_encoders.cls_pooler import ClsPooler
from allennlp.training.checkpointer import Checkpointer
from allennlp.training.gradient_descent_trainer import GradientDescentTrainer
from allennlp.data.data_loaders.simple_data_loader import SimpleDataLoader
from allennlp.training.optimizers import AdamOptimizer
from allennlp.predictors.text_classifier import TextClassifierPredictor
from allennlp.training.callbacks.tensorboard import TensorBoardCallback
from torch import nn
from torch.nn.functional import binary_cross_entropy_with_logits
random.seed(1986)
SEQ_LABELS = ["humansMentioned", "vehiclesMentioned", "eventVerb", "activeEventVerb"]
# adapted from bert-for-framenet project
class SequenceMultiLabelField(Field):
def __init__(self,
labels: List[List[str]],
sequence_field: SequenceField,
binarizer: MultiLabelBinarizer,
label_namespace: str
):
self.labels = labels
self._indexed_labels = None
self._label_namespace = label_namespace
self.sequence_field = sequence_field
self.binarizer = binarizer
@staticmethod
def retokenize_tags(tags: List[List[str]],
offsets: List[Tuple[int, int]],
wp_primary_token: str = "last",
wp_secondary_tokens: str = "empty",
empty_value=lambda: []
) -> List[List[str]]:
tags_per_wordpiece = [
empty_value() # [CLS]
]
for i, (off_start, off_end) in enumerate(offsets):
tag = tags[i]
# put a tag on the first wordpiece corresponding to the word token
# e.g. "hello" --> "he" + "##ll" + "##o" --> 2 extra tokens
# TAGS: [..., TAG, None, None, ...]
num_extra_tokens = off_end - off_start
if wp_primary_token == "first":
tags_per_wordpiece.append(tag)
if wp_secondary_tokens == "repeat":
tags_per_wordpiece.extend(num_extra_tokens * [tag])
else:
tags_per_wordpiece.extend(num_extra_tokens * [empty_value()])
if wp_primary_token == "last":
tags_per_wordpiece.append(tag)
tags_per_wordpiece.append(empty_value()) # [SEP]
return tags_per_wordpiece
def count_vocab_items(self, counter: Dict[str, Dict[str, int]]):
for label_list in self.labels:
for label in label_list:
counter[self._label_namespace][label] += 1
def get_padding_lengths(self) -> Dict[str, int]:
return {"num_tokens": self.sequence_field.sequence_length()}
def index(self, vocab: Vocabulary):
indexed_labels: List[List[int]] = []
for sentence_labels in self.labels:
sentence_indexed_labels = []
for label in sentence_labels:
try:
sentence_indexed_labels.append(
vocab.get_token_index(label, self._label_namespace))
except KeyError:
print(f"[WARNING] Ignore unknown label {label}")
indexed_labels.append(sentence_indexed_labels)
self._indexed_labels = indexed_labels
def as_tensor(self, padding_lengths: Dict[str, int]) -> torch.Tensor:
# binarize
binarized_seq = self.binarizer.transform(self._indexed_labels).tolist()
# padding
desired_num_tokens = padding_lengths["num_tokens"]
padded_tags = pad_sequence_to_length(binarized_seq, desired_num_tokens,
default_value=lambda: list(self.binarizer.transform([[]])[0]))
tensor = torch.tensor(padded_tags, dtype=torch.float)
return tensor
def empty_field(self) -> 'Field':
field = SequenceMultiLabelField(
[], self.sequence_field.empty_field(), self.binarizer, self._label_namespace)
field._indexed_labels = []
return field
# adapted from bert-for-framenet project
class MultiSequenceLabelModel(Model):
def __init__(self, embedder: PretrainedTransformerEmbedder, decoder_output_size: int, hidden_size: int, vocab: Vocabulary, embedding_size: int = 768):
super().__init__(vocab)
self.embedder = embedder
self.out_features = decoder_output_size
self.hidden_size = hidden_size
self.layers = nn.Sequential(
nn.Linear(in_features=embedding_size,
out_features=self.hidden_size),
nn.ReLU(),
nn.Linear(in_features=self.hidden_size,
out_features=self.out_features)
)
def forward(self, tokens: TextFieldTensors, label: Optional[torch.FloatTensor] = None):
embeddings = self.embedder(tokens["token_ids"])
mask = get_text_field_mask(tokens).float()
tag_logits = self.layers(embeddings)
mask = mask.reshape(mask.shape[0], mask.shape[1], 1).repeat(1, 1, self.out_features)
output = {"tag_logits": tag_logits}
if label is not None:
loss = binary_cross_entropy_with_logits(tag_logits, label, mask)
output["loss"] = loss
def get_metrics(self, _) -> Dict[str, float]:
return {}
def make_human_readable(self,
prediction,
label_namespace,
threshold=0.2,
sigmoid=True
) -> Tuple[List[str], Optional[List[float]]]:
if sigmoid:
prediction = torch.sigmoid(prediction)
predicted_labels: List[List[str]] = [[] for _ in range(len(prediction))]
# get all predictions with a positive probability
for coord in torch.nonzero(prediction > threshold):
label = self.vocab.get_token_from_index(int(coord[1]), label_namespace)
predicted_labels[coord[0]].append(f"{label}:{prediction[coord[0], coord[1]]:.3f}")
str_predictions: List[str] = []
for label_list in predicted_labels:
str_predictions.append("|".join(label_list) or "_")
return str_predictions
class TrafficBechdelReader(DatasetReader):
def __init__(self, token_indexers, tokenizer, binarizer):
self.token_indexers = token_indexers
self.tokenizer: PretrainedTransformerTokenizer = tokenizer
self.binarizer = binarizer
self.orig_data = []
super().__init__()
def _read(self, file_path) -> Iterable[Instance]:
self.orig_data.clear()
with open(file_path, encoding="utf-8") as f:
for line in f:
# skip any empty lines
if not line.strip():
continue
sentence_parts = line.lstrip("[").rstrip("]").split(",")
token_txts = []
token_mlabels = []
for sp in sentence_parts:
sp_txt, sp_lbl_str = sp.split(":")
if sp_lbl_str == "[]":
sp_lbls = []
else:
sp_lbls = sp_lbl_str.lstrip("[").rstrip("]").split("|")
# if the text is a WordNet thingy
wn_match = re.match(r"^(.+)-n-\d+$", sp_txt)
if wn_match:
sp_txt = wn_match.group(1)
# multi-token text
sp_toks = sp_txt.split()
for tok in sp_toks:
token_txts.append(tok)
token_mlabels.append(sp_lbls)
self.orig_data.append({
"sentence": token_txts,
"labels": token_mlabels,
})
yield self.text_to_instance(token_txts, token_mlabels)
def text_to_instance(self, sentence: List[str], labels: List[List[str]] = None) -> Instance:
tokens, offsets = self.tokenizer.intra_word_tokenize(sentence)
text_field = TextField(tokens, self.token_indexers)
fields = {"tokens": text_field}
if labels is not None:
labels_ = SequenceMultiLabelField.retokenize_tags(labels, offsets)
label_field = SequenceMultiLabelField(labels_, text_field, self.binarizer, "labels")
fields["label"] = label_field
return Instance(fields)
def count_parties(sentence, lexical_dicts, nlp):
num_humans = 0
num_vehicles = 0
def is_in_words(l, category):
for subcategory, words in lexical_dicts[category].items():
if subcategory.startswith("WN:"):
words = [re.match(r"^(.+)-n-\d+$", w).group(1) for w in words]
if l in words:
return True
return False
doc = nlp(sentence.lower())
for token in doc:
lemma = token.lemma_
if is_in_words(lemma, "persons"):
num_humans += 1
if is_in_words(lemma, "vehicles"):
num_vehicles += 1
return num_humans, num_vehicles
def predict_rule_based(annotations="data/crashes/bechdel_annotations_dev_first_25.csv"):
data_crashes = pd.read_csv(annotations)
with open("output/crashes/predict_bechdel/lexical_dicts.json", encoding="utf-8") as f:
lexical_dicts = json.load(f)
nlp = spacy.load("nl_core_news_md")
for _, row in data_crashes.iterrows():
sentence = row["sentence"]
num_humans, num_vehicles = count_parties(sentence, lexical_dicts, nlp)
print(sentence)
print(f"\thumans={num_humans}, vehicles={num_vehicles}")
def evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_first_25.csv", out_file="output/crashes/predict_bechdel/predictions_crashes25.csv"):
data_crashes = pd.read_csv(annotations)
labels_crashes = [
{
"party_mentioned": str(row["mentioned"]),
"party_human": str(row["as_human"]),
"active": str(True) if str(row["active"]).lower() == "true" else str(False)
}
for _, row in data_crashes.iterrows()
]
predictions_crashes = [predictor.predict(
row["sentence"]) for i, row in data_crashes.iterrows()]
crashes_out = []
correct = 0
partial_2_attrs = 0
partial_1_attr = 0
correct_mentions = 0
correct_humans = 0
correct_active = 0
for sentence, label, prediction in zip(data_crashes["sentence"], labels_crashes, predictions_crashes):
predicted = prediction["label"]
if attrib == "all":
gold = "|".join([f"{k}={v}" for k, v in label.items()])
else:
gold = label["attrib"]
if gold == predicted:
correct += 1
if attrib == "all":
partial_2_attrs += 1
partial_1_attr += 1
if attrib == "all":
gold_attrs = set(gold.split("|"))
pred_attrs = set(predicted.split("|"))
if len(gold_attrs & pred_attrs) == 2:
partial_2_attrs += 1
partial_1_attr += 1
elif len(gold_attrs & pred_attrs) == 1:
partial_1_attr += 1
if gold.split("|")[0] == predicted.split("|")[0]:
correct_mentions += 1
if gold.split("|")[1] == predicted.split("|")[1]:
correct_humans += 1
if gold.split("|")[2] == predicted.split("|")[2]:
correct_active += 1
crashes_out.append(
{"sentence": sentence, "gold": gold, "prediction": predicted})
print("ACC_crashes (strict) = ", correct/len(data_crashes))
print("ACC_crashes (partial:2) = ", partial_2_attrs/len(data_crashes))
print("ACC_crashes (partial:1) = ", partial_1_attr/len(data_crashes))
print("ACC_crashes (mentions) = ", correct_mentions/len(data_crashes))
print("ACC_crashes (humans) = ", correct_humans/len(data_crashes))
print("ACC_crashes (active) = ", correct_active/len(data_crashes))
pd.DataFrame(crashes_out).to_csv(out_file)
def filter_events_for_bechdel():
with open("data/crashes/thecrashes_data_all_text.json", encoding="utf-8") as f:
events = json.load(f)
total_articles = 0
data_out = []
for ev in events:
total_articles += len(ev["articles"])
num_persons = len(ev["persons"])
num_transport_modes = len({p["transportationmode"]
for p in ev["persons"]})
if num_transport_modes <= 2:
for art in ev["articles"]:
data_out.append({"event_id": ev["id"], "article_id": art["id"], "headline": art["title"],
"num_persons": num_persons, "num_transport_modes": num_transport_modes})
print("Total articles = ", total_articles)
print("Filtered articles: ", len(data_out))
out_df = pd.DataFrame(data_out)
out_df.to_csv("output/crashes/predict_bechdel/filtered_headlines.csv")
def train_and_eval(train=True):
# use_gpu = False
use_gpu = True
cuda_device = None if use_gpu and torch.cuda.is_available() else -1
transformer = "GroNLP/bert-base-dutch-cased"
# transformer = "xlm-roberta-large"
token_indexers = {"tokens": PretrainedTransformerIndexer(transformer)}
tokenizer = PretrainedTransformerTokenizer(transformer)
binarizer = MultiLabelBinarizer()
binarizer.fit([SEQ_LABELS])
reader = TrafficBechdelReader(token_indexers, tokenizer, binarizer)
instances = list(reader.read("output/prolog/bechdel_headlines.txt"))
orig_data = reader.orig_data
zipped = list(zip(instances, orig_data))
random.shuffle(zipped)
instances_ = [i[0] for i in zipped]
orig_data_ = [i[1] for i in zipped]
num_dev = round(0.05 * len(instances_))
num_test = round(0.25 * len(instances_))
num_train = len(instances_) - num_dev - num_test
print("LEN(train/dev/test)=", num_train, num_dev, num_test)
instances_train = instances_[:num_train]
instances_dev = instances_[num_train:num_train + num_dev]
# instances_test = instances_[num_train+num_dev:num_train:]
# orig_train = orig_data_[:num_train]
orig_dev = orig_data_[num_train:num_train + num_dev]
vocab = Vocabulary.from_instances(instances_train + instances_dev)
embedder = BasicTextFieldEmbedder(
{"tokens": PretrainedTransformerEmbedder(transformer)})
model = MultiSequenceLabelModel(embedder, len(SEQ_LABELS), 1000, vocab)
if use_gpu:
model = model.cuda(cuda_device)
# checkpoint_dir = f"output/crashes/predict_bechdel/model_{attrib}/"
checkpoint_dir = f"/scratch/p289731/predict_bechdel/model_seqlabel/"
serialization_dir = f"/scratch/p289731/predict_bechdel/serialization_seqlabel/"
if train:
os.makedirs(checkpoint_dir)
os.makedirs(serialization_dir)
tensorboard = TensorBoardCallback(
serialization_dir, should_log_learning_rate=True)
checkpointer = Checkpointer(serialization_dir=checkpoint_dir)
optimizer = AdamOptimizer(
[(n, p) for n, p in model.named_parameters() if p.requires_grad],
lr=1e-5
)
train_loader = SimpleDataLoader(
instances_train, batch_size=8, shuffle=True)
dev_loader = SimpleDataLoader(
instances_dev, batch_size=8, shuffle=False)
train_loader.index_with(vocab)
dev_loader.index_with(vocab)
print("\t\tTraining BERT model")
trainer = GradientDescentTrainer(
model,
optimizer,
train_loader,
validation_data_loader=dev_loader,
# patience=32,
patience=2,
# num_epochs=1,
checkpointer=checkpointer,
cuda_device=cuda_device,
serialization_dir=serialization_dir,
callbacks=[tensorboard]
)
trainer.train()
else:
state_dict = torch.load(
"/scratch/p289731/predict_bechdel/serialization_all/best.th", map_location=cuda_device)
model.load_state_dict(state_dict)
print("\t\tProducing predictions...")
predictor = Predictor(model, reader)
predictions_dev = [predictor.predict_instance(i) for i in instances_dev]
data_out = []
for sentence, prediction in zip(orig_dev, predictions_dev):
readable = model.make_human_readable(prediction, "labels")
text = sentence["sentence"]
gold = sentence["labels"]
predicted = readable
data_out.append(
{"sentence": text, "gold": gold, "predicted": predicted})
df_out = pd.DataFrame(data_out)
df_out.to_csv("output/crashes/predict_bechdel/predictions_dev.csv")
# print()
# print("First 25 crashes:")
# evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_first_25.csv",
# out_file="output/crashes/predict_bechdel/predictions_first_25.csv")
# print()
# print("Next 75 crashes:")
# evaluate_crashes(predictor, attrib, annotations="data/crashes/bechdel_annotations_dev_next_75.csv",
# out_file="output/crashes/predict_bechdel/predictions_next_75.csv")
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("action", choices=["train", "predict", "rules", "filter"])
args = ap.parse_args()
if args.action == "train":
train_and_eval(train=True)
elif args.action == "predict":
train_and_eval(train=False)
elif args.action == "rules":
predict_rule_based()
else:
filter_events_for_bechdel()
|