File size: 8,488 Bytes
b11ac48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import json
import os
import random
import shutil
from datetime import datetime
import langdetect
import nltk
import pandas as pd
from langdetect import DetectorFactory, LangDetectException
DATA_FILE = "data/crashes/thecrashes_data_all_text.json"
DEV_PORTION = .10
random.seed(2001)
DetectorFactory.seed = 0
def is_a_real_time(timestamp):
"""Helper function, checks if a given timestamp really has a time"""
# 00:00:00 (midnight) is the "empty" timestamp, ignore it
if timestamp.hour == timestamp.minute == timestamp.second == 0:
return False
return True
def main():
process_events()
def detect_language(article):
if article["alltext"]:
sample = article["alltext"]
elif article["summary"]:
sample = article["summary"]
else:
sample = article["title"]
try:
return langdetect.detect(sample)
except LangDetectException:
print(f"\tCould not detect language for text_id={article['id']}")
print(f"\tSample={sample})")
print()
return "UNK_LANG"
def extract_text_info(event):
ev_text_lines = []
ev_id_lines = []
ev_meta_rows = []
for article in event["articles"]:
text_id = article["id"]
try:
pubdate = datetime.fromisoformat(article["publishedtime"]).strftime("%Y-%m-%d %H:%M:%S")
except ValueError:
print(f"\t\tcould not parse date {article['publishedtime']}")
pubdate = None
url = article["url"]
provider = article["sitename"]
title = article["title"]
language = detect_language(article)
ev_meta_rows.append({
"event_id": event["id"],
"text_id": text_id,
"pubdate": pubdate,
"language": language,
"url": url,
"provider": provider,
"title": title
})
summary = article["summary"]
body = article["alltext"]
text_lines = []
id_lines = []
for line in segment(title, language):
text_lines.append(line)
id_lines.append(f"event {event['id']}\ttext {text_id}\ttitle")
for line in segment(summary, language):
text_lines.append(line)
id_lines.append(f"event {event['id']}\ttext {text_id}\tsummary")
for line in segment(body, language):
text_lines.append(line)
id_lines.append(f"event {event['id']}\ttext {text_id}\tbody")
ev_text_lines.append(text_lines)
ev_id_lines.append(id_lines)
return ev_text_lines, ev_id_lines, ev_meta_rows
def segment(text, language):
# don't split Hebrew and Vietnamese (because we don't have a segmenter for it)
if language in ["he", "vi"]:
return text
lang_map = {
"nl": "dutch",
"en": "english",
"es": "spanish",
"de": "german",
"fr": "french",
"ru": "russian",
"pt": "portuguese"
}
nltk_lang = lang_map.get(language)
# what to do with languages without sent tokenizer in NLTK (apart from Hebrew):
if not nltk_lang:
if language == "af":
# treat Afrikaans as Dutch
nltk_lang = "dutch"
else:
print(f"Found an article with unsupported language={language}, falling back to English NLTK")
nltk_lang = "english"
return nltk.sent_tokenize(text, nltk_lang)
def write_to_text_by_event(text_lines, text_meta_lines, event_id, split_to_dir, split):
event_dir = f"{split_to_dir[split]}/{event_id}"
os.makedirs(event_dir, exist_ok=True)
for art_lines, row in zip(text_lines, text_meta_lines):
text_file = f"{event_dir}/{row['text_id']}.txt"
with open(text_file, "w", encoding="utf-8") as f:
for line in art_lines:
f.write(line + os.linesep)
def process_events():
print("Loading data file...")
with open(DATA_FILE, encoding="utf-8") as f:
data = json.load(f)
event_all_rows = []
event_dev_rows = []
event_main_rows = []
text_all_rows = []
text_dev_rows = []
text_main_rows = []
# make empty text files
text_file_basenames = {
"all": "output/crashes/split_data/all.texts",
"dev": "output/crashes/split_data/split_dev10.texts",
"main": "output/crashes/split_data/split_main.texts"
}
for split, bn in text_file_basenames.items():
for ext in [".text.txt", ".ids.txt"]:
f = open(f"{bn}{ext}", "w", encoding="utf-8")
f.close()
# clear & make text file directories
text_files_by_event_dir = {}
for split in ["all", "dev", "main"]:
prefix = "split_dev10" if split == "dev" else "split_main" if split == "main" else "all"
text_dir = f"output/crashes/split_data/{prefix}_texts_by_event"
text_files_by_event_dir[split] = text_dir
if os.path.exists(text_dir):
shutil.rmtree(text_dir)
os.mkdir(text_dir)
# helper function for writing text files
def append_to_txt(txt_file, lines):
with open(txt_file, "a", encoding="utf-8") as f_out:
for art_lines in lines:
for line in art_lines:
f_out.write(line + os.linesep)
print("Processing events...")
for event in data:
event_id = event["id"]
print(f"\tevent_id={event_id}")
try:
timestamp = datetime.fromisoformat(event["date"])
except ValueError:
timestamp = None
event_row = {
"event:id": event_id,
"event:date": timestamp.strftime("%Y-%m-%d") if timestamp else None,
"event:time": timestamp.strftime("%H-%M-%S") if timestamp and is_a_real_time(timestamp) else None,
"event:coordinates": f"{event['latitude'], event['longitude']}",
"vehicle_involved": 1 if any(p for p in event["persons"] if p["transportationmode"] in range(5, 14)) else 0
}
for health, health_code in (("dead", 3), ("injured", 2)):
all_with_health = [p for p in event["persons"] if p["health"] == health_code]
event_row[f"outcomes:{health}:total"] = len(all_with_health)
event_row[f"outcomes:{health}:child"] = len([p for p in all_with_health if p["child"] == 1])
for mode, mode_codes in (("pedestrian", [1]), ("cyclist", [2]), ("vehicle", range(5, 14))):
event_row[f"outcomes:{health}:{mode}"] = len([p for p in all_with_health
if p["transportationmode"] in mode_codes])
text_lines, text_id_lines, text_meta_rows = extract_text_info(event)
event_all_rows.append(event_row)
text_all_rows.extend(text_meta_rows)
append_to_txt(text_file_basenames["all"] + ".text.txt", text_lines)
append_to_txt(text_file_basenames["all"] + ".ids.txt", text_id_lines)
write_to_text_by_event(text_lines, text_meta_rows, event_id, text_files_by_event_dir, "all")
if random.random() < DEV_PORTION:
event_dev_rows.append(event_row)
text_dev_rows.extend(text_meta_rows)
append_to_txt(text_file_basenames["dev"] + ".text.txt", text_lines)
append_to_txt(text_file_basenames["dev"] + ".ids.txt", text_id_lines)
write_to_text_by_event(text_lines, text_meta_rows, event_id, text_files_by_event_dir, "dev")
else:
event_main_rows.append(event_row)
text_main_rows.extend(text_meta_rows)
append_to_txt(text_file_basenames["main"] + ".text.txt", text_lines)
append_to_txt(text_file_basenames["main"] + ".ids.txt", text_id_lines)
write_to_text_by_event(text_lines, text_meta_rows, event_id, text_files_by_event_dir, "main")
all_ev_df = pd.DataFrame(event_all_rows)
main_ev_df = pd.DataFrame(event_main_rows)
dev_ev_df = pd.DataFrame(event_dev_rows)
for df, file in ((all_ev_df, "all.events"), (main_ev_df, "split_main.events"), (dev_ev_df, "split_dev10.events")):
df.to_csv(f"output/crashes/split_data/{file}.csv")
all_txt_df = pd.DataFrame(text_all_rows)
main_txt_df = pd.DataFrame(text_main_rows)
dev_txt_df = pd.DataFrame(text_dev_rows)
for df, file in ((all_txt_df, "all.texts"), (main_txt_df, "split_main.texts"), (dev_txt_df, "split_dev10.texts")):
df.to_csv(f"output/crashes/split_data/{file}.meta.csv")
if __name__ == '__main__':
main()
|