File size: 4,711 Bytes
6eb58ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import json
from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url
from PIL import Image
from data.utils import pre_caption
class coco_karpathy_train(Dataset):
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=''):
'''
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
'''
url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json'
filename = 'coco_karpathy_train.json'
download_url(url,ann_root)
self.annotation = json.load(open(os.path.join(ann_root,filename),'r'))
self.transform = transform
self.image_root = image_root
self.max_words = max_words
self.prompt = prompt
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann['image_id']
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.image_root,ann['image'])
image = Image.open(image_path).convert('RGB')
image = self.transform(image)
caption = self.prompt+pre_caption(ann['caption'], self.max_words)
return image, caption, self.img_ids[ann['image_id']]
class coco_karpathy_caption_eval(Dataset):
def __init__(self, transform, image_root, ann_root, split):
'''
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
'''
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
download_url(urls[split],ann_root)
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
self.transform = transform
self.image_root = image_root
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.image_root,ann['image'])
image = Image.open(image_path).convert('RGB')
image = self.transform(image)
img_id = ann['image'].split('/')[-1].strip('.jpg').split('_')[-1]
return image, int(img_id)
class coco_karpathy_retrieval_eval(Dataset):
def __init__(self, transform, image_root, ann_root, split, max_words=30):
'''
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
'''
urls = {'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json',
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json'}
filenames = {'val':'coco_karpathy_val.json','test':'coco_karpathy_test.json'}
download_url(urls[split],ann_root)
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
self.transform = transform
self.image_root = image_root
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann['image'])
self.img2txt[img_id] = []
for i, caption in enumerate(ann['caption']):
self.text.append(pre_caption(caption,max_words))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
image_path = os.path.join(self.image_root, self.annotation[index]['image'])
image = Image.open(image_path).convert('RGB')
image = self.transform(image)
return image, index |