File size: 1,207 Bytes
4ad1414
16e2733
 
 
 
4ad1414
36401c9
 
da58e58
 
16e2733
da58e58
 
16e2733
4ad1414
da58e58
 
 
 
 
d1d829b
a704e92
16e2733
da58e58
 
16e2733
da58e58
 
16e2733
da58e58
 
d1d829b
a704e92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import spacy

left_text = st.text_area('First', 'This is a test')
right_text = st.text_area('Second', 'This is another test')

st.toast("Loading spacy...")
nlp = spacy.load("en_core_web_sm")

st.toast("Loading rufimelo/Legal-BERTimbau-sts-base...")
model = SentenceTransformer("rufimelo/Legal-BERTimbau-sts-base")

st.toast("Legal-BERTimbau-sts-base: computing embeddings...")
embeddings = model.encode([left_text, right_text])

st.toast("Legal-BERTimbau-sts-base: computing similarity...")
similarity = cosine_similarity(embeddings[: 1], embeddings[1 :])
st.info("Legal-BERTimbau-sts-base: score ->")
st.dataframe(similarity)

st.toast("Loading nlpaueb/legal-bert-base-uncased...")
model = SentenceTransformer("nlpaueb/legal-bert-base-uncased")

st.toast("legal-bert-base-uncased: computing embeddings...")
embeddings = model.encode([left_text, right_text])

st.toast("legal-bert-base-uncased: computing similarity...")
similarity = cosine_similarity(embeddings[: 1], embeddings[1 :])
st.info("legal-bert-base-uncased: score ->")
st.dataframe(similarity)