ricardo-lsantos commited on
Commit
9cecb44
·
1 Parent(s): b6ad1b0

Added App with NN

Browse files
Files changed (6) hide show
  1. .gitignore +3 -0
  2. README.md +3 -0
  3. app.py +51 -0
  4. nn.png +0 -0
  5. nn.py +196 -0
  6. requirements.txt +1 -0
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ .venv
2
+ __pycache__
3
+ *.json
README.md CHANGED
@@ -10,3 +10,6 @@ pinned: false
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
+
14
+ # References
15
+ * https://www.codingame.com/playgrounds/59631/neural-network-xor-example-from-scratch-no-libs
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from nn import train, predict, save_model, sigmoid
3
+
4
+ # INPUTS = [[0,0],[0,1],[1,0],[1,1]]
5
+ # OUTPUTS = [[0],[1],[1],[0]]
6
+ # EPOCHS = 1000000
7
+ # ALPHAS = 20
8
+
9
+ INPUTS = [[0,0],[0,1],[1,0],[1,1]]
10
+ OUTPUTS = [[0],[1],[1],[0]]
11
+
12
+ def runNN(epoch, alpha):
13
+ # Train model
14
+ modelo = train(epochs=epoch, alpha=alpha)
15
+
16
+ print(modelo)
17
+ # Save model to file
18
+ save_model(modelo, "modelo.json")
19
+
20
+ for i in range(4):
21
+ result = predict(INPUTS[i][0],INPUTS[i][1], activation=sigmoid)
22
+ st.write("for input", INPUTS[i], "expected", OUTPUTS[i][0], "predicted", f"{result:4.4}", "which is", "correct" if round(result)==OUTPUTS[i][0] else "incorrect")
23
+
24
+
25
+
26
+ def sidebar():
27
+ # Neural network controls
28
+ st.sidebar.header('Neural Network Controls')
29
+ st.sidebar.text('Number of epochs')
30
+ epochs = st.sidebar.slider('Epochs', 1000, 1000000, 100000)
31
+ st.sidebar.text('Learning rate')
32
+ alphas = st.sidebar.slider('Alphas', 1, 100, 20)
33
+ if st.sidebar.button('Run Neural Network'):
34
+ runNN(epochs, alphas)
35
+
36
+
37
+ def app():
38
+ st.title('Simple Neural Network App')
39
+ st.write('This is the Neural Network image we are trying to implement!')
40
+ st.image('nn.png', width=500)
41
+ sidebar()
42
+
43
+ st.markdown('''
44
+ ### References
45
+ * https://www.codingame.com/playgrounds/59631/neural-network-xor-example-from-scratch-no-libs
46
+ ''')
47
+
48
+ if __name__ == '__main__':
49
+ app()
50
+
51
+
nn.png ADDED
nn.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import math
3
+ import json
4
+
5
+ INPUTS = [[0,0],[0,1],[1,0],[1,1]]
6
+ OUTPUTS = [[0],[1],[1],[0]]
7
+ EPOCHS = 1000000
8
+ ALPHAS = 20
9
+
10
+
11
+ WEPOCHS = EPOCHS // 100
12
+
13
+
14
+ VARIANCE_W = 0.5
15
+ VARIANCE_B = 0
16
+
17
+ w11 = random.uniform(-VARIANCE_W,VARIANCE_W)
18
+ w21 = random.uniform(-VARIANCE_W,VARIANCE_W)
19
+ b1 = VARIANCE_B
20
+
21
+ w12 = random.uniform(-VARIANCE_W,VARIANCE_W)
22
+ w22 = random.uniform(-VARIANCE_W,VARIANCE_W)
23
+ b2 = VARIANCE_B
24
+
25
+ w13 = random.uniform(-VARIANCE_W,VARIANCE_W)
26
+ w23 = random.uniform(-VARIANCE_W,VARIANCE_W)
27
+ b3 = VARIANCE_B
28
+
29
+ o1 = random.uniform(-VARIANCE_W,VARIANCE_W)
30
+ o2 = random.uniform(-VARIANCE_W,VARIANCE_W)
31
+ o3 = random.uniform(-VARIANCE_W,VARIANCE_W)
32
+ ob = VARIANCE_B
33
+
34
+ ## Tudo a 0.5
35
+ # VARIANCE_W = 0.5
36
+ # VARIANCE_B = 1
37
+ # w11 = VARIANCE_W
38
+ # w21 = VARIANCE_W
39
+ # b1 = VARIANCE_B
40
+
41
+ # w12 = VARIANCE_W
42
+ # w22 = VARIANCE_W
43
+ # b2 = VARIANCE_B
44
+
45
+ # w13 = VARIANCE_W
46
+ # w23 = VARIANCE_W
47
+ # b3 = VARIANCE_B
48
+
49
+ # o1 = VARIANCE_W
50
+ # o2 = VARIANCE_W
51
+ # o3 = VARIANCE_W
52
+ # ob = VARIANCE_B
53
+
54
+
55
+ def sigmoid(x):
56
+ return 1.0 / (1.0 + math.exp(-x))
57
+
58
+
59
+ def sigmoid_prime(x): # x already sigmoided
60
+ return x * (1 - x)
61
+
62
+ def relu(x):
63
+ return max(0,x)
64
+
65
+ def relu_prime(x):
66
+ return 1 if x>0 else 0
67
+
68
+ def tanh(x):
69
+ return math.tanh(x)
70
+
71
+ def tanh_prime(x):
72
+ return 1 - x**2
73
+
74
+ def softmax(x):
75
+ return math.exp(x) / (math.exp(x) + 1)
76
+
77
+ def softmax_prime(x):
78
+ return x * (1 - x)
79
+
80
+ def predict(i1, i2, activation=sigmoid):
81
+ s1 = w11 * i1 + w21 * i2 + b1
82
+ # s1 = sigmoid(s1)
83
+ s1 = activation(s1)
84
+ s2 = w12 * i1 + w22 * i2 + b2
85
+ # s2 = sigmoid(s2)
86
+ s2 = activation(s2)
87
+ s3 = w13 * i1 + w23 * i2 + b3
88
+ # s3 = sigmoid(s3)
89
+ s3 = activation(s3)
90
+
91
+ output = s1 * o1 + s2 * o2 + s3 * o3 + ob
92
+ # output = sigmoid(output)
93
+ output = activation(output)
94
+
95
+ return output
96
+
97
+
98
+ def learn(i1,i2,target, activation, activation_prime, alpha=0.2):
99
+ global w11,w21,b1,w12,w22,b2,w13,w23,b3
100
+ global o1,o2,o3,ob
101
+
102
+ s1 = w11 * i1 + w21 * i2 + b1
103
+ # s1 = sigmoid(s1)
104
+ s1 = activation(s1)
105
+ s2 = w12 * i1 + w22 * i2 + b2
106
+ # s2 = sigmoid(s2)
107
+ s2 = activation(s2)
108
+ s3 = w13 * i1 + w23 * i2 + b3
109
+ # s3 = sigmoid(s3)
110
+ s3 = activation(s3)
111
+
112
+ output = s1 * o1 + s2 * o2 + s3 * o3 + ob
113
+ # output = sigmoid(output)
114
+ output = activation(output)
115
+
116
+ error = target - output
117
+ # derror = error * sigmoid_prime(output)
118
+ derror = error * activation_prime(output)
119
+
120
+ # ds1 = derror * o1 * sigmoid_prime(s1)
121
+ ds1 = derror * o1 * activation_prime(s1)
122
+ # ds2 = derror * o2 * sigmoid_prime(s2)
123
+ ds2 = derror * o2 * activation_prime(s2)
124
+ # ds3 = derror * o3 * sigmoid_prime(s3)
125
+ ds3 = derror * o3 * activation_prime(s3)
126
+
127
+ o1 += alpha * s1 * derror
128
+ o2 += alpha * s2 * derror
129
+ o3 += alpha * s3 * derror
130
+ ob += alpha * derror
131
+
132
+ w11 += alpha * i1 * ds1
133
+ w21 += alpha * i2 * ds1
134
+ b1 += alpha * ds1
135
+ w12 += alpha * i1 * ds2
136
+ w22 += alpha * i2 * ds2
137
+ b2 += alpha * ds2
138
+ w13 += alpha * i1 * ds3
139
+ w23 += alpha * i2 * ds3
140
+ b3 += alpha * ds3
141
+
142
+
143
+ def train(epochs=EPOCHS, alpha=ALPHAS):
144
+ modelo = None
145
+ for epoch in range(1,epochs+1):
146
+ indexes = [0,1,2,3]
147
+ random.shuffle(indexes)
148
+ for j in indexes:
149
+ learn(INPUTS[j][0],INPUTS[j][1],OUTPUTS[j][0], activation=sigmoid, activation_prime=sigmoid_prime, alpha=alpha)
150
+
151
+ if epoch%WEPOCHS == 0:
152
+ cost = 0
153
+ for j in range(4):
154
+ o = predict(INPUTS[j][0],INPUTS[j][1], activation=sigmoid)
155
+ cost += (OUTPUTS[j][0] - o) ** 2
156
+ cost /= 4
157
+ print("epoch", epoch, "mean squared error:", cost)
158
+
159
+ modelo = {
160
+ "w11": w11,
161
+ "w21": w21,
162
+ "b1": b1,
163
+ "w12": w12,
164
+ "w22": w22,
165
+ "b2": b2,
166
+ "w13": w13,
167
+ "w23": w23,
168
+ "b3": b3,
169
+ "o1": o1,
170
+ "o2": o2,
171
+ "o3": o3,
172
+ "ob": ob
173
+ }
174
+ return modelo
175
+
176
+ def save_model(modelo, filename):
177
+ with open(filename, 'w') as json_file:
178
+ json.dump(modelo, json_file)
179
+
180
+ ## Main
181
+ def main():
182
+ # Train model
183
+ modelo = train()
184
+
185
+ print(modelo)
186
+ # Save model to file
187
+ save_model(modelo, "modelo.json")
188
+
189
+ for i in range(4):
190
+ result = predict(INPUTS[i][0],INPUTS[i][1], activation=sigmoid)
191
+ print("for input", INPUTS[i], "expected", OUTPUTS[i][0], "predicted", f"{result:4.4}", "which is", "correct" if round(result)==OUTPUTS[i][0] else "incorrect")
192
+ # print("for input", INPUTS[i], "expected", OUTPUTS[i][0], "predicted", result, "which is", "correct" if round(result)==OUTPUTS[i][0] else "incorrect")
193
+
194
+
195
+ if __name__ == "__main__":
196
+ main()
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ streamlit