Spaces:
Sleeping
Sleeping
rifatramadhani
commited on
Commit
·
b18d110
1
Parent(s):
0d37404
refactor: output structure
Browse files
app.py
CHANGED
@@ -8,8 +8,13 @@ import spaces
|
|
8 |
import logging
|
9 |
import datetime
|
10 |
|
|
|
|
|
|
|
|
|
11 |
@spaces.GPU
|
12 |
def classify(query):
|
|
|
13 |
model = Detoxify("unbiased-small", device="cuda")
|
14 |
|
15 |
all_result = []
|
@@ -25,27 +30,31 @@ def classify(query):
|
|
25 |
data = [query]
|
26 |
pass
|
27 |
|
|
|
28 |
for i in range(len(data)):
|
29 |
result = {}
|
30 |
-
|
31 |
-
|
32 |
df = pd.DataFrame(model.predict(str(data[i])), index=[0])
|
33 |
columns = df.columns
|
34 |
|
35 |
for i, label in enumerate(columns):
|
36 |
result[label] = df[label][0].round(3).astype("float")
|
37 |
|
38 |
-
end_time = datetime.datetime.now()
|
39 |
-
elapsed_time = end_time - start_time
|
40 |
-
result["time"] = str(elapsed_time)
|
41 |
-
|
42 |
-
logging.debug("elapsed predict time: %s", str(elapsed_time))
|
43 |
-
print("elapsed predict time:", str(elapsed_time))
|
44 |
-
|
45 |
all_result.append(result)
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
demo = gr.Interface(fn=classify, inputs=["text"], outputs="text")
|
51 |
demo.launch()
|
|
|
8 |
import logging
|
9 |
import datetime
|
10 |
|
11 |
+
# Load model for first time cache
|
12 |
+
model = Detoxify("unbiased-small")
|
13 |
+
|
14 |
+
|
15 |
@spaces.GPU
|
16 |
def classify(query):
|
17 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
model = Detoxify("unbiased-small", device="cuda")
|
19 |
|
20 |
all_result = []
|
|
|
30 |
data = [query]
|
31 |
pass
|
32 |
|
33 |
+
start_time = datetime.datetime.now()
|
34 |
for i in range(len(data)):
|
35 |
result = {}
|
36 |
+
|
|
|
37 |
df = pd.DataFrame(model.predict(str(data[i])), index=[0])
|
38 |
columns = df.columns
|
39 |
|
40 |
for i, label in enumerate(columns):
|
41 |
result[label] = df[label][0].round(3).astype("float")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
all_result.append(result)
|
44 |
|
45 |
+
end_time = datetime.datetime.now()
|
46 |
+
elapsed_time = end_time - start_time
|
47 |
+
|
48 |
+
logging.debug("elapsed predict time: %s", str(elapsed_time))
|
49 |
+
print("elapsed predict time:", str(elapsed_time))
|
50 |
+
|
51 |
+
output = {}
|
52 |
+
output["time"] = str(elapsed_time)
|
53 |
+
output["device"] = torch_device
|
54 |
+
output["result"] = all_result
|
55 |
+
|
56 |
+
return json.dumps(output)
|
57 |
+
|
58 |
|
59 |
demo = gr.Interface(fn=classify, inputs=["text"], outputs="text")
|
60 |
demo.launch()
|