ringringdang commited on
Commit
71c3b19
·
1 Parent(s): 90126b7

add app.py

Browse files
Files changed (1) hide show
  1. app.py +291 -0
app.py ADDED
@@ -0,0 +1,291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This script refers to the dialogue example of streamlit, the interactive
2
+ generation code of chatglm2 and transformers.
3
+
4
+ We mainly modified part of the code logic to adapt to the
5
+ generation of our model.
6
+ Please refer to these links below for more information:
7
+ 1. streamlit chat example:
8
+ https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps
9
+ 2. chatglm2:
10
+ https://github.com/THUDM/ChatGLM2-6B
11
+ 3. transformers:
12
+ https://github.com/huggingface/transformers
13
+ Please run with the command `streamlit run path/to/web_demo.py
14
+ --server.address=0.0.0.0 --server.port 7860`.
15
+ Using `python path/to/web_demo.py` may cause unknown problems.
16
+ """
17
+ # isort: skip_file
18
+ import copy
19
+ import warnings
20
+ from dataclasses import asdict, dataclass
21
+ from typing import Callable, List, Optional
22
+
23
+ import streamlit as st
24
+ import torch
25
+ from torch import nn
26
+ from transformers.generation.utils import (LogitsProcessorList,
27
+ StoppingCriteriaList)
28
+ from transformers.utils import logging
29
+
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM # isort: skip
31
+
32
+ logger = logging.get_logger(__name__)
33
+ # model_name_or_path="/root/finetune/models/internlm2-chat-7b"
34
+ model_name_or_path = "../finetune/work_dirs/assistTuner/merged"
35
+ @dataclass
36
+ class GenerationConfig:
37
+ # this config is used for chat to provide more diversity
38
+ max_length: int = 32768
39
+ top_p: float = 0.8
40
+ temperature: float = 0.8
41
+ do_sample: bool = True
42
+ repetition_penalty: float = 1.005
43
+
44
+
45
+ @torch.inference_mode()
46
+ def generate_interactive(
47
+ model,
48
+ tokenizer,
49
+ prompt,
50
+ generation_config: Optional[GenerationConfig] = None,
51
+ logits_processor: Optional[LogitsProcessorList] = None,
52
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
53
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
54
+ List[int]]] = None,
55
+ additional_eos_token_id: Optional[int] = None,
56
+ **kwargs,
57
+ ):
58
+ inputs = tokenizer([prompt], padding=True, return_tensors='pt')
59
+ input_length = len(inputs['input_ids'][0])
60
+ for k, v in inputs.items():
61
+ inputs[k] = v.cuda()
62
+ input_ids = inputs['input_ids']
63
+ _, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
64
+ if generation_config is None:
65
+ generation_config = model.generation_config
66
+ generation_config = copy.deepcopy(generation_config)
67
+ model_kwargs = generation_config.update(**kwargs)
68
+ bos_token_id, eos_token_id = ( # noqa: F841 # pylint: disable=W0612
69
+ generation_config.bos_token_id,
70
+ generation_config.eos_token_id,
71
+ )
72
+ if isinstance(eos_token_id, int):
73
+ eos_token_id = [eos_token_id]
74
+ if additional_eos_token_id is not None:
75
+ eos_token_id.append(additional_eos_token_id)
76
+ has_default_max_length = kwargs.get(
77
+ 'max_length') is None and generation_config.max_length is not None
78
+ if has_default_max_length and generation_config.max_new_tokens is None:
79
+ warnings.warn(
80
+ f"Using 'max_length''s default \
81
+ ({repr(generation_config.max_length)}) \
82
+ to control the generation length. "
83
+ 'This behaviour is deprecated and will be removed from the \
84
+ config in v5 of Transformers -- we'
85
+ ' recommend using `max_new_tokens` to control the maximum \
86
+ length of the generation.',
87
+ UserWarning,
88
+ )
89
+ elif generation_config.max_new_tokens is not None:
90
+ generation_config.max_length = generation_config.max_new_tokens + \
91
+ input_ids_seq_length
92
+ if not has_default_max_length:
93
+ logger.warn( # pylint: disable=W4902
94
+ f"Both 'max_new_tokens' (={generation_config.max_new_tokens}) "
95
+ f"and 'max_length'(={generation_config.max_length}) seem to "
96
+ "have been set. 'max_new_tokens' will take precedence. "
97
+ 'Please refer to the documentation for more information. '
98
+ '(https://huggingface.co/docs/transformers/main/'
99
+ 'en/main_classes/text_generation)',
100
+ UserWarning,
101
+ )
102
+
103
+ if input_ids_seq_length >= generation_config.max_length:
104
+ input_ids_string = 'input_ids'
105
+ logger.warning(
106
+ f'Input length of {input_ids_string} is {input_ids_seq_length}, '
107
+ f"but 'max_length' is set to {generation_config.max_length}. "
108
+ 'This can lead to unexpected behavior. You should consider'
109
+ " increasing 'max_new_tokens'.")
110
+
111
+ # 2. Set generation parameters if not already defined
112
+ logits_processor = logits_processor if logits_processor is not None \
113
+ else LogitsProcessorList()
114
+ stopping_criteria = stopping_criteria if stopping_criteria is not None \
115
+ else StoppingCriteriaList()
116
+
117
+ logits_processor = model._get_logits_processor(
118
+ generation_config=generation_config,
119
+ input_ids_seq_length=input_ids_seq_length,
120
+ encoder_input_ids=input_ids,
121
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
122
+ logits_processor=logits_processor,
123
+ )
124
+
125
+ stopping_criteria = model._get_stopping_criteria(
126
+ generation_config=generation_config,
127
+ stopping_criteria=stopping_criteria)
128
+ logits_warper = model._get_logits_warper(generation_config)
129
+
130
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
131
+ scores = None
132
+ while True:
133
+ model_inputs = model.prepare_inputs_for_generation(
134
+ input_ids, **model_kwargs)
135
+ # forward pass to get next token
136
+ outputs = model(
137
+ **model_inputs,
138
+ return_dict=True,
139
+ output_attentions=False,
140
+ output_hidden_states=False,
141
+ )
142
+
143
+ next_token_logits = outputs.logits[:, -1, :]
144
+
145
+ # pre-process distribution
146
+ next_token_scores = logits_processor(input_ids, next_token_logits)
147
+ next_token_scores = logits_warper(input_ids, next_token_scores)
148
+
149
+ # sample
150
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
151
+ if generation_config.do_sample:
152
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
153
+ else:
154
+ next_tokens = torch.argmax(probs, dim=-1)
155
+
156
+ # update generated ids, model inputs, and length for next step
157
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
158
+ model_kwargs = model._update_model_kwargs_for_generation(
159
+ outputs, model_kwargs, is_encoder_decoder=False)
160
+ unfinished_sequences = unfinished_sequences.mul(
161
+ (min(next_tokens != i for i in eos_token_id)).long())
162
+
163
+ output_token_ids = input_ids[0].cpu().tolist()
164
+ output_token_ids = output_token_ids[input_length:]
165
+ for each_eos_token_id in eos_token_id:
166
+ if output_token_ids[-1] == each_eos_token_id:
167
+ output_token_ids = output_token_ids[:-1]
168
+ response = tokenizer.decode(output_token_ids)
169
+
170
+ yield response
171
+ # stop when each sentence is finished
172
+ # or if we exceed the maximum length
173
+ if unfinished_sequences.max() == 0 or stopping_criteria(
174
+ input_ids, scores):
175
+ break
176
+
177
+
178
+ def on_btn_click():
179
+ del st.session_state.messages
180
+
181
+
182
+ @st.cache_resource
183
+ def load_model():
184
+ model = (AutoModelForCausalLM.from_pretrained(
185
+ model_name_or_path,
186
+ trust_remote_code=True).to(torch.bfloat16).cuda())
187
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path,
188
+ trust_remote_code=True)
189
+ return model, tokenizer
190
+
191
+
192
+ def prepare_generation_config():
193
+ with st.sidebar:
194
+ max_length = st.slider('Max Length',
195
+ min_value=8,
196
+ max_value=32768,
197
+ value=32768)
198
+ top_p = st.slider('Top P', 0.0, 1.0, 0.8, step=0.01)
199
+ temperature = st.slider('Temperature', 0.0, 1.0, 0.7, step=0.01)
200
+ st.button('Clear Chat History', on_click=on_btn_click)
201
+
202
+ generation_config = GenerationConfig(max_length=max_length,
203
+ top_p=top_p,
204
+ temperature=temperature)
205
+
206
+ return generation_config
207
+
208
+
209
+ user_prompt = '<|im_start|>user\n{user}<|im_end|>\n'
210
+ robot_prompt = '<|im_start|>assistant\n{robot}<|im_end|>\n'
211
+ cur_query_prompt = '<|im_start|>user\n{user}<|im_end|>\n\
212
+ <|im_start|>assistant\n'
213
+
214
+
215
+ def combine_history(prompt):
216
+ messages = st.session_state.messages
217
+ meta_instruction = ('You are a helpful, honest, '
218
+ 'and harmless AI assistant.')
219
+ total_prompt = f'<s><|im_start|>system\n{meta_instruction}<|im_end|>\n'
220
+ for message in messages:
221
+ cur_content = message['content']
222
+ if message['role'] == 'user':
223
+ cur_prompt = user_prompt.format(user=cur_content)
224
+ elif message['role'] == 'robot':
225
+ cur_prompt = robot_prompt.format(robot=cur_content)
226
+ else:
227
+ raise RuntimeError
228
+ total_prompt += cur_prompt
229
+ total_prompt = total_prompt + cur_query_prompt.format(user=prompt)
230
+ return total_prompt
231
+
232
+
233
+ def main():
234
+ st.title('internlm2_5-7b-chat-assistant')
235
+
236
+ # torch.cuda.empty_cache()
237
+ print('load model begin.')
238
+ model, tokenizer = load_model()
239
+ print('load model end.')
240
+
241
+ generation_config = prepare_generation_config()
242
+
243
+ # Initialize chat history
244
+ if 'messages' not in st.session_state:
245
+ st.session_state.messages = []
246
+
247
+ # Display chat messages from history on app rerun
248
+ for message in st.session_state.messages:
249
+ with st.chat_message(message['role'], avatar=message.get('avatar')):
250
+ st.markdown(message['content'])
251
+
252
+ # Accept user input
253
+ if prompt := st.chat_input('What is up?'):
254
+ # Display user message in chat message container
255
+
256
+ with st.chat_message('user', avatar='user'):
257
+
258
+ st.markdown(prompt)
259
+ real_prompt = combine_history(prompt)
260
+ # Add user message to chat history
261
+ st.session_state.messages.append({
262
+ 'role': 'user',
263
+ 'content': prompt,
264
+ 'avatar': 'user'
265
+ })
266
+
267
+ with st.chat_message('robot', avatar='assistant'):
268
+
269
+ message_placeholder = st.empty()
270
+ for cur_response in generate_interactive(
271
+ model=model,
272
+ tokenizer=tokenizer,
273
+ prompt=real_prompt,
274
+ additional_eos_token_id=92542,
275
+ device='cuda:0',
276
+ **asdict(generation_config),
277
+ ):
278
+ # Display robot response in chat message container
279
+ message_placeholder.markdown(cur_response + '▌')
280
+ message_placeholder.markdown(cur_response)
281
+ # Add robot response to chat history
282
+ st.session_state.messages.append({
283
+ 'role': 'robot',
284
+ 'content': cur_response, # pylint: disable=undefined-loop-variable
285
+ 'avatar': 'assistant',
286
+ })
287
+ torch.cuda.empty_cache()
288
+
289
+
290
+ if __name__ == '__main__':
291
+ main()