rishisim commited on
Commit
762e024
·
verified ·
1 Parent(s): f62ac38

updated app.py with jupyternotebook code.

Browse files
Files changed (1) hide show
  1. app.py +82 -7
app.py CHANGED
@@ -1,15 +1,90 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name, intensity):
4
- return "Hello, " + name + "!" * int(intensity)
5
 
6
- demo = gr.Interface(
7
- fn=greet,
8
- inputs=["text", "slider"],
9
- outputs=["text"],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  )
11
 
12
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
 
15
  # import gradio as gr
 
1
  import gradio as gr
2
+ import json
3
+ from langchain.llms import GooglePalm
4
 
5
+ api_key = "AIzaSyCdM_aAIsW_nPbjarOF83mbX1_z1cVX2_M"
 
6
 
7
+ llm = GooglePalm(google_api_key = api_key, temperature=0.7)
8
+
9
+ from langchain.document_loaders.csv_loader import CSVLoader
10
+
11
+ loader = CSVLoader(file_path='aiotsmartlabs_faq.csv', source_column = 'prompt')
12
+ data = loader.load()
13
+
14
+ from langchain_huggingface import HuggingFaceEmbeddings
15
+ from langchain.vectorstores import FAISS
16
+
17
+ # instructor_embeddings = HuggingFaceEmbeddings(model_name = "Alibaba-NLP/gte-Qwen2-7B-instruct") # best model <-- but too big
18
+ instructor_embeddings = HuggingFaceEmbeddings(model_name = "BAAI/bge-m3")
19
+ # instructor_embeddings = HuggingFaceEmbeddings()
20
+
21
+ vectordb = FAISS.from_documents(documents = data, embedding = instructor_embeddings)
22
+
23
+ # e = embeddings_model.embed_query("What is your refund policy")
24
+
25
+ retriever = vectordb.as_retriever()
26
+
27
+ from langchain.prompts import PromptTemplate
28
+
29
+ prompt_template = """Given the following context and a question, generate an answer based on the context only.
30
+
31
+ In the answer try to provide as much text as possible from "response" section in the source document context without making much changes.
32
+ If somebody asks "Who are you?" or a similar phrase, state "I am Rishi's assistant built using a Large Language Model!"
33
+ If the answer is not found in the context, kindly state "I don't know. Please ask Rishi on Discord. Discord Invite Link: https://discord.gg/6ezpZGeCcM. Or email at [email protected]" Don't try to make up an answer.
34
+
35
+ CONTEXT: {context}
36
+
37
+ QUESTION: {question}"""
38
+
39
+ PROMPT = PromptTemplate(
40
+ template = prompt_template, input_variables = ["context", "question"]
41
+ )
42
+
43
+ from langchain.chains import RetrievalQA
44
+
45
+ chain = RetrievalQA.from_chain_type(llm = llm,
46
+ chain_type="stuff",
47
+ retriever=retriever,
48
+ input_key="query",
49
+ return_source_documents=True,
50
+ chain_type_kwargs = {"prompt": PROMPT})
51
+
52
+ # Load your LLM model and necessary components
53
+ # Assume `chain` is a function defined in your notebook that takes a query and returns the output as shown
54
+ # For this example, we'll assume the model and chain function are already available
55
+
56
+ def chatbot(query):
57
+ response = chain(query)
58
+ # Extract the 'result' part of the response
59
+ result = response.get('result', 'Sorry, I could not find an answer.')
60
+ return result
61
+
62
+ # Define the Gradio interface
63
+ iface = gr.Interface(
64
+ fn=chatbot, # Function to call
65
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."), # Input type
66
+ outputs="text", # Output type
67
+ title="Hugging Face LLM Chatbot",
68
+ description="Ask any question related to the documents and get an answer from the LLM model.",
69
  )
70
 
71
+ # Launch the interface
72
+ iface.launch()
73
+
74
+ # Save this file as app.py and push it to your Hugging Face Space repository
75
+
76
+ # import gradio as gr
77
+
78
+ # def greet(name, intensity):
79
+ # return "Hello, " + name + "!" * int(intensity)
80
+
81
+ # demo = gr.Interface(
82
+ # fn=greet,
83
+ # inputs=["text", "slider"],
84
+ # outputs=["text"],
85
+ # )
86
+
87
+ # demo.launch()
88
 
89
 
90
  # import gradio as gr