Spaces:
Sleeping
Sleeping
File size: 7,416 Bytes
f9bf356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from huggingface_hub import HfApi, create_repo
from datasets import Dataset, load_dataset
import os
import html
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
HF_TOKEN = os.getenv('HF_TOKEN')
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable not found")
api = HfApi(token=HF_TOKEN)
DATASET_NAME = "airletters-leaderboard-results"
INITIAL_DATA = {
"name": [
"ViT-B/16", "MaxViT-T", "ResNet-200", "ResNeXt-101", "SE-ResNeXt-26",
"ResNet-50", "VideoMAE (16)", "ResNet-101 + LSTM", "ResNet-50 + LSTM",
"ResNext-152 3D", "Strided Inflated EfficientNet 3D", "ResNext-50 3D",
"ResNext-101 3D", "ResNext-200 3D", "Video-LLaVA (w/o contrast class)",
"VideoLLaMA2 (w/o contrast class)", "Video-LLaVA", "VideoLLaMA2",
"Human Performance (10 videos/class)"
],
"url": ["https://arxiv.org/abs/2410.02921"] * 19,
"top1_accuracy": [
7.49, 7.56, 11.44, 13.09, 13.29, 13.87, 57.96, 58.45, 63.24,
65.77, 65.97, 66.54, 69.74, 71.20, 2.53, 2.47, 7.29, 7.58, 96.67
],
"organization": ["AirLetters Authors"] * 19,
"model_type": [
"Image", "Image", "Image", "Image", "Image",
"Image", "Video", "Video", "Video",
"Video", "Video", "Video", "Video", "Video",
"Vision Language", "Vision Language", "Vision Language", "Vision Language",
"Human Evaluation"
]
}
def initialize_dataset():
try:
dataset = load_dataset(f"rishitdagli/{DATASET_NAME}", split="train", token=HF_TOKEN, download_mode="force_redownload")
df = dataset.to_pandas()
if 'model_url' in df.columns:
df = df.map(lambda row: {"name": model_hyperlink(row["model_url"], row["name"])})
df = df.drop('model_url', axis=1)
dataset = Dataset.from_pandas(df)
dataset.push_to_hub(DATASET_NAME, token=HF_TOKEN)
except Exception as e:
print(f"Creating new dataset due to: {str(e)}")
df = pd.DataFrame(INITIAL_DATA)
dataset = Dataset.from_pandas(df)
try:
create_repo(DATASET_NAME, repo_type="dataset", token=HF_TOKEN)
except Exception as e:
print(f"Repo might already exist: {str(e)}")
dataset.push_to_hub(DATASET_NAME, token=HF_TOKEN)
return dataset
def calculate_accuracy(test_file, submitted_file):
test = pd.read_csv(test_file)
test2 = pd.read_csv(submitted_file)
test.columns = test.columns.str.strip()
test2.columns = test2.columns.str.strip()
merged = pd.merge(test, test2, on="filename", how="left", suffixes=("_true", "_pred"))
merged["label_pred"] = merged["label_pred"].fillna("")
correct_predictions = (merged["label_true"] == merged["label_pred"]).sum()
total_entries = len(merged)
return (correct_predictions / total_entries) * 100
def model_hyperlink(link, model_name):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def update_leaderboard(name, organization, model_type, model_url, csv_file):
top1_acc = calculate_accuracy("test.csv", csv_file)
dataset = load_dataset(f"rishitdagli/{DATASET_NAME}", split="train", token=HF_TOKEN)
df = dataset.to_pandas()
new_row = {
'name': name,
'url': model_url,
'organization': organization,
'model_type': model_type,
'top1_accuracy': top1_acc,
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
df = df.sort_values('top1_accuracy', ascending=False)
df = df.reset_index(drop=True)
new_dataset = Dataset.from_pandas(df)
new_dataset.push_to_hub(DATASET_NAME, token=HF_TOKEN)
return "Successfully updated leaderboard"
def init_leaderboard(dataframe):
return Leaderboard(
value=dataframe,
datatype=["markdown", "str", "str", "number"],
select_columns=SelectColumns(
default_selection=["name", "organization", "model_type", "top1_accuracy"],
cant_deselect=["name", "top1_accuracy"],
label="Select Columns to Display",
),
search_columns=["name", "organization"],
filter_columns=[
ColumnFilter("model_type", type="checkboxgroup", label="Model Type"),
],
)
def refresh():
dataset = load_dataset(f"rishitdagli/{DATASET_NAME}", split="train", token=HF_TOKEN, download_mode="force_redownload")
dataset = dataset.map(lambda row: {"name": model_hyperlink(row["url"], row["name"])})
df = dataset.to_pandas()
return df
def create_interface():
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Video("30fps.mp4", autoplay=True, width=900, loop=True, include_audio=False)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="leaderboard-tab"):
dataset = initialize_dataset()
dataset = dataset.map(lambda row: {"name": model_hyperlink(row["url"], row["name"])})
df = dataset.to_pandas()
leaderboard = init_leaderboard(df)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard,
],
)
with gr.TabItem("π About", elem_id="about-tab"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit", elem_id="submit-tab"):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
name = gr.Textbox(label="Model Name")
model_url = gr.Textbox(label="Model URL", placeholder="https://huggingface.co/...")
org = gr.Textbox(label="Organization")
model_type = gr.Dropdown(
choices=["Image", "Video", "Vision Language", "Tracking", "Other"],
label="Model Type"
)
csv_file = gr.File(label="Results CSV", type="filepath")
submit_btn = gr.Button("Submit")
result = gr.Textbox(label="Result")
submit_btn.click(
update_leaderboard,
inputs=[name, org, model_type, model_url, csv_file],
outputs=[result]
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=7,
elem_id="citation-button",
show_copy_button=True,
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch() |