File size: 21,416 Bytes
2ddc64d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
from typing import List, Union, Optional
import pandas as pd
class Article:
    '''
    attributes:
    - title: str
    - authors: list of str
    - abstract: str
    - url: str
    - publication_year: int
    '''
    def __init__(self,
                 title: str,
                 authors: List[str],
                 abstract: str,
                 url: str,
                 publication_year: int
                 ) -> None:
        super().__init__()
        self.title = title
        self.authors = authors
        self.url = url
        self.publication_year = publication_year
        self.abstract = abstract.replace('\n',' ')
    def __str__(self):
        ret = ''
        ret +=self.title +'\n- '
        ret +=f"authors: {';'.join(self.authors)}" + '\n- '
        ret += f'''abstract: {self.abstract}''' + '\n- '
        ret += f'''url: {self.url}'''+ '\n- '
        ret += f'''publication year: {self.publication_year}'''+ '\n\n'

        return ret

    def getDict(self) -> dict:
        return {
            'title': self.title,
            'authors': self.authors,
            'abstract': self.abstract,
            'url': self.url,
            'publication_year': self.publication_year
        }

class ArticleList:
    '''
    list of articles
    '''
    def __init__(self,articles:Optional[Union[Article, List[Article]]]=None) -> None:
        super().__init__()
        self.__list__ = [] # List[Article]

        if articles is not None:
            self.addArticles(articles)

    def addArticles(self, articles:Union[Article, List[Article]]):
        if isinstance(articles,Article):
            self.__list__.append(articles)
        elif isinstance(articles, list):
            self.__list__ += articles

    # subscriptable and slice-able
    def __getitem__(self, idx):
        if isinstance(idx, int):
            return self.__list__[idx]
        if isinstance(idx, slice):
            # return
            return self.__list__[0 if idx.start is None else idx.start: idx.stop: 0 if idx.step is None else idx.step]


    def __str__(self):
        ret = f'There are {len(self.__list__)} articles:\n'
        for id, article in enumerate(self.__list__):
            ret += f'{id+1}) '
            ret += f'{article}'

        return ret

    # return an iterator that can be used in for loop etc.
    def __iter__(self):
        return self.__list__.__iter__()

    def __len__(self):
        return len(self.__list__)

    def getDataFrame(self) ->pd.DataFrame:
        return pd.DataFrame(
            [x.getDict() for x in self.__list__]
        )


    @classmethod
    def parse_ieee_articles(cls,items: Union[dict, List[dict]]):
        if isinstance(items,dict):
            items = [items]

        ret = [
            Article(
                title=item['title'],
                authors=[x['full_name'] for x in item['authors']['authors']],
                abstract=item['abstract'],
                url=item['html_url'],
                publication_year=item['publication_year']
            )
            for item in items ] # List[Article]

        ret = ArticleList(ret)
        return ret

    @classmethod
    def parse_arxiv_articles(cls, items: Union[dict, List[dict]]):
        if isinstance(items, dict):
            items = [items]

        def __getAuthors__(item):
            if isinstance(item['author'],list):
                return [x['name'] for x in item['author']]
            else:
                return [item['author']['name']]

        ret = [
            Article(
                title=item['title'],
                authors=__getAuthors__(item),
                abstract=item['summary'],
                url=item['id'],
                publication_year=item['published'][:4]
            )
            for item in items]  # List[Article]

        ret = ArticleList(ret)
        return ret

    @classmethod
    def parse_pwc_articles(cls, items: Union[dict, List[dict]]):
        if isinstance(items, dict):
            items = [items]

        ret = [
            Article(
                title=item['title'],
                authors=item['authors'],
                abstract=item['abstract'],
                url=item['url_abs'],
                publication_year=item['published'][:4]
            )
            for item in items]  # List[Article]

        ret = ArticleList(ret)
        return ret

    def getAbstracts(self) -> List[str]:
        return [x.abstract for x in self.__list__]

    def getTitles(self) -> List[str]:
        return [x.title for x in self.__list__]

    def getArticles(self) -> List[Article]:
        return self.__list__

if __name__ == '__main__':
    item = [{'doi': '10.1109/COMPSAC51774.2021.00100',
 'title': 'Towards Developing An EMR in Mental Health Care for Children’s Mental Health Development among the Underserved Communities in USA',
 'publisher': 'IEEE',
 'isbn': '978-1-6654-2464-6',
 'issn': '0730-3157',
 'rank': 1,
 'authors': {'authors': [{'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088961521',
    'id': 37088961521,
    'full_name': 'Kazi Zawad Arefin',
    'author_order': 1},
   {'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962639',
    'id': 37088962639,
    'full_name': 'Kazi Shafiul Alam Shuvo',
    'author_order': 2},
   {'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088511010',
    'id': 37088511010,
    'full_name': 'Masud Rabbani',
    'author_order': 3},
   {'affiliation': 'Product Developer, Marquette Energy Analytics, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088961612',
    'id': 37088961612,
    'full_name': 'Peter Dobbs',
    'author_order': 4},
   {'affiliation': 'Next Step Clinic, Mental Health America of WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962516',
    'id': 37088962516,
    'full_name': 'Leah Jepson',
    'author_order': 5},
   {'affiliation': 'Next Step Clinic, Mental Health America of WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962336',
    'id': 37088962336,
    'full_name': 'Amy Leventhal',
    'author_order': 6},
   {'affiliation': 'Department of Psychology, Marquette University, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962101',
    'id': 37088962101,
    'full_name': 'Amy Vaughan Van Heeke',
    'author_order': 7},
   {'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37270354900',
    'id': 37270354900,
    'full_name': 'Sheikh Iqbal Ahamed',
    'author_order': 8}]},
 'access_type': 'LOCKED',
 'content_type': 'Conferences',
 'abstract': "Next Step Clinic (NSC) is a neighborhood-based mental clinic in Milwaukee in the USA for early identification and intervention of Autism spectrum disorder (ASD) children. NSC's primary goal is to serve the underserved families in that area with children aged 15 months to 10 years who have ASD symptoms free of cost. Our proposed and implemented Electronic Medical Records (NSC: EMR) has been developed for NSC. This paper describes the NSC: EMR's design specification and whole development process with the workflow control of this system in NSC. This NSC: EMR has been used to record the patient’s medical data and make appointments both physically or virtually. The integration of standardized psychological evaluation form has reduced the paperwork and physical storage burden for the family navigator. By deploying the system, the family navigator can increase their productivity from the screening to all intervention processes to deal with ASD children. Even in the lockdown time, due to the pandemic of COVID-19, about 84 ASD patients from the deprived family at that area got registered and took intervention through this NSC: EMR. The usability and cost-effective feature has already shown the potential of NSC: EMR, and it will be scaled to serve a large population in the USA and beyond.",
 'article_number': '9529808',
 'pdf_url': 'https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9529808',
 'html_url': 'https://ieeexplore.ieee.org/document/9529808/',
 'abstract_url': 'https://ieeexplore.ieee.org/document/9529808/',
 'publication_title': '2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)',
 'conference_location': 'Madrid, Spain',
 'conference_dates': '12-16 July 2021',
 'publication_number': 9529349,
 'is_number': 9529356,
 'publication_year': 2021,
 'publication_date': '12-16 July 2021',
 'start_page': '688',
 'end_page': '693',
 'citing_paper_count': 2,
 'citing_patent_count': 0,
 'index_terms': {'ieee_terms': {'terms': ['Pediatrics',
    'Pandemics',
    'Navigation',
    'Mental health',
    'Tools',
    'Software',
    'Information technology']},
  'author_terms': {'terms': ['Electronic medical record (EMR)',
    'Mental Health Care (MHC)',
    'Autism Spectrum Disorder (ASD)',
    'Health Information Technology (HIT)',
    'Mental Health Professional (MHP)']}},
 'isbn_formats': {'isbns': [{'format': 'Print on Demand(PoD) ISBN',
    'value': '978-1-6654-2464-6',
    'isbnType': 'New-2005'},
   {'format': 'Electronic ISBN',
    'value': '978-1-6654-2463-9',
    'isbnType': 'New-2005'}]}},{'doi': '10.1109/COMPSAC51774.2021.00100',
 'title': 'Towards Developing An EMR in Mental Health Care for Children’s Mental Health Development among the Underserved Communities in USA',
 'publisher': 'IEEE',
 'isbn': '978-1-6654-2464-6',
 'issn': '0730-3157',
 'rank': 1,
 'authors': {'authors': [{'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088961521',
    'id': 37088961521,
    'full_name': 'Kazi Zawad Arefin',
    'author_order': 1},
   {'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962639',
    'id': 37088962639,
    'full_name': 'Kazi Shafiul Alam Shuvo',
    'author_order': 2},
   {'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088511010',
    'id': 37088511010,
    'full_name': 'Masud Rabbani',
    'author_order': 3},
   {'affiliation': 'Product Developer, Marquette Energy Analytics, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088961612',
    'id': 37088961612,
    'full_name': 'Peter Dobbs',
    'author_order': 4},
   {'affiliation': 'Next Step Clinic, Mental Health America of WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962516',
    'id': 37088962516,
    'full_name': 'Leah Jepson',
    'author_order': 5},
   {'affiliation': 'Next Step Clinic, Mental Health America of WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962336',
    'id': 37088962336,
    'full_name': 'Amy Leventhal',
    'author_order': 6},
   {'affiliation': 'Department of Psychology, Marquette University, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37088962101',
    'id': 37088962101,
    'full_name': 'Amy Vaughan Van Heeke',
    'author_order': 7},
   {'affiliation': 'Department of Computer Science, Ubicomp Lab, Marquette University, Milwaukee, WI, USA',
    'authorUrl': 'https://ieeexplore.ieee.org/author/37270354900',
    'id': 37270354900,
    'full_name': 'Sheikh Iqbal Ahamed',
    'author_order': 8}]},
 'access_type': 'LOCKED',
 'content_type': 'Conferences',
 'abstract': "Next Step Clinic (NSC) is a neighborhood-based mental clinic in Milwaukee in the USA for early identification and intervention of Autism spectrum disorder (ASD) children. NSC's primary goal is to serve the underserved families in that area with children aged 15 months to 10 years who have ASD symptoms free of cost. Our proposed and implemented Electronic Medical Records (NSC: EMR) has been developed for NSC. This paper describes the NSC: EMR's design specification and whole development process with the workflow control of this system in NSC. This NSC: EMR has been used to record the patient’s medical data and make appointments both physically or virtually. The integration of standardized psychological evaluation form has reduced the paperwork and physical storage burden for the family navigator. By deploying the system, the family navigator can increase their productivity from the screening to all intervention processes to deal with ASD children. Even in the lockdown time, due to the pandemic of COVID-19, about 84 ASD patients from the deprived family at that area got registered and took intervention through this NSC: EMR. The usability and cost-effective feature has already shown the potential of NSC: EMR, and it will be scaled to serve a large population in the USA and beyond.",
 'article_number': '9529808',
 'pdf_url': 'https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9529808',
 'html_url': 'https://ieeexplore.ieee.org/document/9529808/',
 'abstract_url': 'https://ieeexplore.ieee.org/document/9529808/',
 'publication_title': '2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)',
 'conference_location': 'Madrid, Spain',
 'conference_dates': '12-16 July 2021',
 'publication_number': 9529349,
 'is_number': 9529356,
 'publication_year': 2021,
 'publication_date': '12-16 July 2021',
 'start_page': '688',
 'end_page': '693',
 'citing_paper_count': 2,
 'citing_patent_count': 0,
 'index_terms': {'ieee_terms': {'terms': ['Pediatrics',
    'Pandemics',
    'Navigation',
    'Mental health',
    'Tools',
    'Software',
    'Information technology']},
  'author_terms': {'terms': ['Electronic medical record (EMR)',
    'Mental Health Care (MHC)',
    'Autism Spectrum Disorder (ASD)',
    'Health Information Technology (HIT)',
    'Mental Health Professional (MHP)']}},
 'isbn_formats': {'isbns': [{'format': 'Print on Demand(PoD) ISBN',
    'value': '978-1-6654-2464-6',
    'isbnType': 'New-2005'},
   {'format': 'Electronic ISBN',
    'value': '978-1-6654-2463-9',
    'isbnType': 'New-2005'}]}}]
    ieee_articles = ArticleList.parse_ieee_articles(item)
    print(ieee_articles)

    item = [{'id': 'http://arxiv.org/abs/2106.08047v1',
 'updated': '2021-06-15T11:07:51Z',
 'published': '2021-06-15T11:07:51Z',
 'title': 'Comparisons of Australian Mental Health Distributions',
 'summary': 'Bayesian nonparametric estimates of Australian mental health distributions\nare obtained to assess how the mental health status of the population has\nchanged over time and to compare the mental health status of female/male and\nindigenous/non-indigenous population subgroups. First- and second-order\nstochastic dominance are used to compare distributions, with results presented\nin terms of the posterior probability of dominance and the posterior\nprobability of no dominance. Our results suggest mental health has deteriorated\nin recent years, that males mental health status is better than that of\nfemales, and non-indigenous health status is better than that of the indigenous\npopulation.',
 'author': [{'name': 'David Gunawan'},
  {'name': 'William Griffiths'},
  {'name': 'Duangkamon Chotikapanich'}],
 'link': [{'@href': 'http://arxiv.org/abs/2106.08047v1',
   '@rel': 'alternate',
   '@type': 'text/html'},
  {'@title': 'pdf',
   '@href': 'http://arxiv.org/pdf/2106.08047v1',
   '@rel': 'related',
   '@type': 'application/pdf'}],
 'arxiv:primary_category': {'@xmlns:arxiv': 'http://arxiv.org/schemas/atom',
  '@term': 'econ.EM',
  '@scheme': 'http://arxiv.org/schemas/atom'},
 'category': {'@term': 'econ.EM', '@scheme': 'http://arxiv.org/schemas/atom'}},
            {'id': 'http://arxiv.org/abs/2106.08047v1',
 'updated': '2021-06-15T11:07:51Z',
 'published': '2021-06-15T11:07:51Z',
 'title': 'Comparisons of Australian Mental Health Distributions',
 'summary': 'Bayesian nonparametric estimates of Australian mental health distributions\nare obtained to assess how the mental health status of the population has\nchanged over time and to compare the mental health status of female/male and\nindigenous/non-indigenous population subgroups. First- and second-order\nstochastic dominance are used to compare distributions, with results presented\nin terms of the posterior probability of dominance and the posterior\nprobability of no dominance. Our results suggest mental health has deteriorated\nin recent years, that males mental health status is better than that of\nfemales, and non-indigenous health status is better than that of the indigenous\npopulation.',
 'author': [{'name': 'David Gunawan'},
  {'name': 'William Griffiths'},
  {'name': 'Duangkamon Chotikapanich'}],
 'link': [{'@href': 'http://arxiv.org/abs/2106.08047v1',
   '@rel': 'alternate',
   '@type': 'text/html'},
  {'@title': 'pdf',
   '@href': 'http://arxiv.org/pdf/2106.08047v1',
   '@rel': 'related',
   '@type': 'application/pdf'}],
 'arxiv:primary_category': {'@xmlns:arxiv': 'http://arxiv.org/schemas/atom',
  '@term': 'econ.EM',
  '@scheme': 'http://arxiv.org/schemas/atom'},
 'category': {'@term': 'econ.EM', '@scheme': 'http://arxiv.org/schemas/atom'}}]

    arxiv_articles = ArticleList.parse_arxiv_articles(item)
    print(arxiv_articles)

    item = [{'id': 'smhd-a-large-scale-resource-for-exploring',
 'arxiv_id': '1806.05258',
 'nips_id': None,
 'url_abs': 'http://arxiv.org/abs/1806.05258v2',
 'url_pdf': 'http://arxiv.org/pdf/1806.05258v2.pdf',
 'title': 'SMHD: A Large-Scale Resource for Exploring Online Language Usage for Multiple Mental Health Conditions',
 'abstract': "Mental health is a significant and growing public health concern. As language\nusage can be leveraged to obtain crucial insights into mental health\nconditions, there is a need for large-scale, labeled, mental health-related\ndatasets of users who have been diagnosed with one or more of such conditions.\nIn this paper, we investigate the creation of high-precision patterns to\nidentify self-reported diagnoses of nine different mental health conditions,\nand obtain high-quality labeled data without the need for manual labelling. We\nintroduce the SMHD (Self-reported Mental Health Diagnoses) dataset and make it\navailable. SMHD is a novel large dataset of social media posts from users with\none or multiple mental health conditions along with matched control users. We\nexamine distinctions in users' language, as measured by linguistic and\npsychological variables. We further explore text classification methods to\nidentify individuals with mental conditions through their language.",
 'authors': ['Sean MacAvaney',
  'Bart Desmet',
  'Nazli Goharian',
  'Andrew Yates',
  'Luca Soldaini',
  'Arman Cohan'],
 'published': '2018-06-13',
 'conference': 'smhd-a-large-scale-resource-for-exploring-1',
 'conference_url_abs': 'https://aclanthology.org/C18-1126',
 'conference_url_pdf': 'https://aclanthology.org/C18-1126.pdf',
 'proceeding': 'coling-2018-8'},
            {'id': 'smhd-a-large-scale-resource-for-exploring',
             'arxiv_id': '1806.05258',
             'nips_id': None,
             'url_abs': 'http://arxiv.org/abs/1806.05258v2',
             'url_pdf': 'http://arxiv.org/pdf/1806.05258v2.pdf',
             'title': 'SMHD: A Large-Scale Resource for Exploring Online Language Usage for Multiple Mental Health Conditions',
             'abstract': "Mental health is a significant and growing public health concern. As language\nusage can be leveraged to obtain crucial insights into mental health\nconditions, there is a need for large-scale, labeled, mental health-related\ndatasets of users who have been diagnosed with one or more of such conditions.\nIn this paper, we investigate the creation of high-precision patterns to\nidentify self-reported diagnoses of nine different mental health conditions,\nand obtain high-quality labeled data without the need for manual labelling. We\nintroduce the SMHD (Self-reported Mental Health Diagnoses) dataset and make it\navailable. SMHD is a novel large dataset of social media posts from users with\none or multiple mental health conditions along with matched control users. We\nexamine distinctions in users' language, as measured by linguistic and\npsychological variables. We further explore text classification methods to\nidentify individuals with mental conditions through their language.",
             'authors': ['Sean MacAvaney',
                         'Bart Desmet',
                         'Nazli Goharian',
                         'Andrew Yates',
                         'Luca Soldaini',
                         'Arman Cohan'],
             'published': '2018-06-13',
             'conference': 'smhd-a-large-scale-resource-for-exploring-1',
             'conference_url_abs': 'https://aclanthology.org/C18-1126',
             'conference_url_pdf': 'https://aclanthology.org/C18-1126.pdf',
             'proceeding': 'coling-2018-8'}
            ]
    pwc_articles = ArticleList.parse_pwc_articles(item)
    print(pwc_articles)

    for i in ieee_articles:
        print(i)

    print(pwc_articles.getDataFrame())