Yurii Paniv commited on
Commit
856636a
·
1 Parent(s): f2717c3

Add UAlpaca 2.0 Beta

Browse files
Files changed (1) hide show
  1. app.py +46 -54
app.py CHANGED
@@ -7,10 +7,10 @@ import spaces
7
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
  """
9
  #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
- lora_name = "robinhad/UAlpaca-1.1-Mistral-7B"
11
 
12
  from peft import PeftModel, PeftConfig
13
- from transformers import LlamaTokenizer, LlamaForCausalLM, BitsAndBytesConfig
14
  from torch import bfloat16
15
  model_name = "mistralai/Mistral-7B-v0.1"
16
 
@@ -20,27 +20,32 @@ quant_config = BitsAndBytesConfig(
20
  bnb_4bit_use_double_quant=True,
21
  bnb_4bit_compute_dtype=bfloat16
22
  )
23
- tokenizer = LlamaTokenizer.from_pretrained(model_name, use_fast=False)
24
- model = LlamaForCausalLM.from_pretrained(
25
  model_name,
26
  quantization_config=quant_config
27
  )
28
 
29
  model = PeftModel.from_pretrained(model, lora_name, torch_device="cpu")
30
 
31
- model = model.to("cuda")
32
 
 
 
 
 
33
 
34
  # will be used with normal template
 
35
  def respond(
36
  message,
37
  history: list[tuple[str, str]],
38
- system_message,
39
  max_tokens,
40
  temperature,
41
  top_p,
42
  ):
43
- messages = [{"role": "system", "content": system_message}]
 
44
 
45
  for val in history:
46
  if val[0]:
@@ -50,40 +55,37 @@ def respond(
50
 
51
  messages.append({"role": "user", "content": message})
52
 
53
- response = ""
54
 
55
- for message in client.chat_completion(
56
- messages,
57
- max_tokens=max_tokens,
58
- stream=True,
59
- temperature=temperature,
60
- top_p=top_p,
61
- ):
62
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- response += token
65
- yield response
66
 
67
- @spaces.GPU
68
- def ask(instruction: str, context: str = None):
69
- print(datetime.now(), instruction, context)
70
- full_question = ""
71
- if context is None:
72
- prepend = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
73
- full_question = prepend + f"### Instruction:\n{instruction}\n\n### Response:\n"
74
- else:
75
- prepend = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
76
- full_question = prepend + f"### Instruction:\n{instruction}\n\n### Input:\n{context}\n\n### Response:\n"
77
- full_question = tokenizer.encode(full_question, return_tensors="pt")
78
- return tokenizer.batch_decode(model.generate(full_question, max_new_tokens=300))[0].split("### Response:")[1].strip().replace("</s>", "")
79
 
80
  """
81
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
82
  """
83
- """demo = gr.ChatInterface(
84
  respond,
85
  additional_inputs=[
86
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
87
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
88
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
89
  gr.Slider(
@@ -94,32 +96,22 @@ For information on how to customize the ChatInterface, peruse the gradio docs: h
94
  label="Top-p (nucleus sampling)",
95
  ),
96
  ],
97
- )"""
98
-
99
- model_name = "robinhad/UAlpaca-1.1-Mistral-7B"
100
-
101
-
102
- def image_classifier(inp):
103
- return {"cat": 0.3, "dog": 0.7}
104
-
105
-
106
- demo = gr.Interface(
107
- title=f"Inference demo for '{model_name}' model, instruction-tuned for Ukrainian",
108
- fn=ask,
109
- inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Context")],
110
- outputs="label",
111
  examples=[
112
- ["Як звали батька Тараса Григоровича Шевченка?", None],
113
- ["Як можна заробити нелегально швидко гроші?", None],
114
- ["Яка найвища гора в Україні?", None],
115
- ["Розкажи історію про Івасика-Телесика", None],
116
- ["Яка з цих гір не знаходиться у Європі?", "Говерла, Монблан, Гран-Парадізо, Еверест"],
117
  [
118
- "Дай відповідь на питання", "Чому у качки жовті ноги?"
119
  ]],
120
- article="""# Attribution
121
- ## ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk"""
122
  )
 
 
 
 
123
  demo.launch()
124
 
125
 
 
7
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
8
  """
9
  #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+ lora_name = "robinhad/UAlpaca-2.0-Mistral-7B"
11
 
12
  from peft import PeftModel, PeftConfig
13
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
14
  from torch import bfloat16
15
  model_name = "mistralai/Mistral-7B-v0.1"
16
 
 
20
  bnb_4bit_use_double_quant=True,
21
  bnb_4bit_compute_dtype=bfloat16
22
  )
23
+ tokenizer = AutoTokenizer.from_pretrained(lora_name, use_fast=True)
24
+ model = AutoModelForCausalLM.from_pretrained(
25
  model_name,
26
  quantization_config=quant_config
27
  )
28
 
29
  model = PeftModel.from_pretrained(model, lora_name, torch_device="cpu")
30
 
31
+ #model = model.to("cuda")
32
 
33
+ from transformers import StoppingCriteriaList, StopStringCriteria, TextIteratorStreamer
34
+ from threading import Thread
35
+
36
+ stop_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer, stop_strings=["<|im_end|>"])])
37
 
38
  # will be used with normal template
39
+ @spaces.GPU
40
  def respond(
41
  message,
42
  history: list[tuple[str, str]],
 
43
  max_tokens,
44
  temperature,
45
  top_p,
46
  ):
47
+ # messages = [{"role": "system", "content": system_message}]
48
+ messages = []
49
 
50
  for val in history:
51
  if val[0]:
 
55
 
56
  messages.append({"role": "user", "content": message})
57
 
 
58
 
59
+ tokenized = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True) #, tokenize=False) #
60
+ #print(tokenized)
61
+ #tokenized = tokenizer(tokenized, return_tensors="pt")["input_ids"]
62
+ print(tokenizer.batch_decode(tokenized)[0])
63
+ print("====")
64
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
65
+ generation_kwargs = dict(inputs=tokenized, streamer=streamer, max_new_tokens=max_tokens, stopping_criteria=stop_criteria, top_p=top_p, temperature=temperature)
66
+
67
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
68
+
69
+ thread.start()
70
+
71
+ generated_text = ""
72
+
73
+ for new_text in streamer:
74
+
75
+ generated_text += new_text
76
+ # generated_text = generated_text.replace("<|im_start|>assistant\n", "")
77
+ generated_text = generated_text.replace("<|im_end|>", "")
78
+ yield generated_text
79
 
 
 
80
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
  """
83
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
84
  """
85
+ demo = gr.ChatInterface(
86
  respond,
87
  additional_inputs=[
88
+ #gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
89
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
90
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
91
  gr.Slider(
 
96
  label="Top-p (nucleus sampling)",
97
  ),
98
  ],
99
+ description="""### Attribution: ELEKS supported this project through a grant dedicated to the memory of Oleksiy Skrypnyk""",
100
+ title=f"Inference demo for '{lora_name}' (alpha) model, instruction-tuned for Ukrainian",
 
 
 
 
 
 
 
 
 
 
 
 
101
  examples=[
102
+ ["Напиши історію про Івасика-Телесика"],
103
+ ["Яка найвища гора в Україні?"],
104
+ ["Як звали батька Тараса Григоровича Шевченка?"],
105
+ ["Як можна заробити нелегально швидко гроші?"],
106
+ ["Яка з цих гір не знаходиться у Європі? Говерла, Монблан, Гран-Парадізо, Еверест"],
107
  [
108
+ "Дай відповідь на питання\nЧому у качки жовті ноги?"
109
  ]],
 
 
110
  )
111
+
112
+
113
+
114
+
115
  demo.launch()
116
 
117