Upload 2 files
Browse files- app.py +62 -3
- requirements.txt +4 -1
app.py
CHANGED
@@ -1,12 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
|
|
8 |
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -39,10 +61,23 @@ def respond(
|
|
39 |
response += token
|
40 |
yield response
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
48 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
@@ -56,8 +91,32 @@ demo = gr.ChatInterface(
|
|
56 |
label="Top-p (nucleus sampling)",
|
57 |
),
|
58 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
|
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from datetime import datetime
|
4 |
|
5 |
"""
|
6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
+
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
+
lora_name = "robinhad/UAlpaca-1.1-Mistral-7B"
|
10 |
|
11 |
+
from peft import PeftModel
|
12 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, BitsAndBytesConfig
|
13 |
+
from torch import bfloat16
|
14 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
15 |
|
16 |
+
quant_config = BitsAndBytesConfig(
|
17 |
+
load_in_4bit=True,
|
18 |
+
bnb_4bit_quant_type="nf4",
|
19 |
+
bnb_4bit_use_double_quant=True,
|
20 |
+
bnb_4bit_compute_dtype=bfloat16
|
21 |
+
)
|
22 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
23 |
+
model = LlamaForCausalLM.from_pretrained(
|
24 |
+
model_name,
|
25 |
+
quantization_config=quant_config,
|
26 |
+
device_map="auto",
|
27 |
+
)
|
28 |
+
model = PeftModel.from_pretrained(model, lora_name)
|
29 |
+
|
30 |
+
|
31 |
+
# will be used with normal template
|
32 |
def respond(
|
33 |
message,
|
34 |
history: list[tuple[str, str]],
|
|
|
61 |
response += token
|
62 |
yield response
|
63 |
|
64 |
+
|
65 |
+
def ask(instruction: str, context: str = None):
|
66 |
+
print(datetime.now(), instruction, context)
|
67 |
+
full_question = ""
|
68 |
+
if context is None:
|
69 |
+
prepend = "Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
70 |
+
full_question = prepend + f"### Instruction:\n{instruction}\n\n### Response:\n"
|
71 |
+
else:
|
72 |
+
prepend = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n"
|
73 |
+
full_question = prepend + f"### Instruction:\n{instruction}\n\n### Input:\n{context}\n\n### Response:\n"
|
74 |
+
full_question = tokenizer.encode(full_question, return_tensors="pt")
|
75 |
+
return tokenizer.batch_decode(model.generate(full_question, max_new_tokens=300))[0].split("### Response:")[1].strip().replace("</s>", "")
|
76 |
+
|
77 |
"""
|
78 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
79 |
"""
|
80 |
+
"""demo = gr.ChatInterface(
|
81 |
respond,
|
82 |
additional_inputs=[
|
83 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
|
|
91 |
label="Top-p (nucleus sampling)",
|
92 |
),
|
93 |
],
|
94 |
+
)"""
|
95 |
+
|
96 |
+
model_name = "robinhad/UAlpaca-1.1-Mistral-7B"
|
97 |
+
|
98 |
+
|
99 |
+
def image_classifier(inp):
|
100 |
+
return {"cat": 0.3, "dog": 0.7}
|
101 |
+
|
102 |
+
|
103 |
+
demo = gr.Interface(
|
104 |
+
title=f"Inference demo for '{model_name}' model, instruction-tuned for Ukrainian",
|
105 |
+
fn=ask,
|
106 |
+
inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Context")],
|
107 |
+
outputs="label",
|
108 |
+
examples=[
|
109 |
+
["Як звали батька Тараса Григоровича Шевченка?", None],
|
110 |
+
["Як можна заробити нелегально швидко гроші?", None],
|
111 |
+
["Яка найвища гора в Україні?", None],
|
112 |
+
["Розкажи історію про Івасика-Телесика", None],
|
113 |
+
["Яка з цих гір не знаходиться у Європі?", "Говерла, Монблан, Гран-Парадізо, Еверест"],
|
114 |
+
[
|
115 |
+
"Дай відповідь на питання", "Чому у качки жовті ноги?"
|
116 |
+
]],
|
117 |
)
|
118 |
+
demo.launch()
|
119 |
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -2,4 +2,7 @@ huggingface_hub==0.22.2
|
|
2 |
numpy<2
|
3 |
transformers
|
4 |
bitsandbytes
|
5 |
-
torch
|
|
|
|
|
|
|
|
2 |
numpy<2
|
3 |
transformers
|
4 |
bitsandbytes
|
5 |
+
torch
|
6 |
+
peft
|
7 |
+
sentencepiece
|
8 |
+
protobuf
|