File size: 1,020 Bytes
e5349d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
"""
Source: https://github.com/AK391/yolov5/blob/master/utils/gradio/demo.py
"""

import gradio as gr
import torch
from PIL import Image

model = torch.hub.load('ultralytics/yolov5', 'custom', 'best.pt')  # force_reload=True to update


def yolo(im, size=640):
    g = (size / max(im.size))  # gain
    im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS)  # resize
    results = model(im)  # inference
    results.render()  # updates results.ims with boxes and labels
    return Image.fromarray(results.ims[0])


inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")

title = "YOLOv5"
description = "YOLOv5 demo for fire detection. Upload an image or click an example image to use."
article = "See https://github.com/robmarkcole/fire-detection-from-images"
examples = [['pan-fire.jpg'], ['fire-basket.jpg']]
gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples).launch(
    debug=True)