Spaces:
Runtime error
Runtime error
import os | |
import time | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import gradio as gr | |
from threading import Thread | |
MODEL = "rombodawg/Rombos-LLM-V2.6-Qwen-14b" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
TITLE = """ | |
<h1><center>Rombos-LLM-V2.6-Qwen-14b</center></h1> | |
<center> | |
<p>The model is licensed under apache 2.0</p> | |
</center> | |
""" | |
PLACEHOLDER = """ | |
<center> | |
<p>rombodawg/Rombos-LLM-V2.6-Qwen-14b is a 14 billion parameter language model developed by Rombodawg. Its my highest quality model for its size.</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
""" | |
device = "cuda" # for GPU usage or "cpu" for CPU usage | |
tokenizer = AutoTokenizer.from_pretrained(MODEL) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
trust_remote_code=True, | |
ignore_mismatched_sizes=True) | |
def format_chat(system_prompt, history, message): | |
formatted_chat = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" | |
for prompt, answer in history: | |
formatted_chat += f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n{answer}<|im_end|>\n" | |
formatted_chat += f"<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
return formatted_chat | |
def stream_chat( | |
message: str, | |
history: list, | |
system_prompt: str, | |
temperature: float = 0.3, | |
max_new_tokens: int = 256, | |
top_p: float = 1.0 | |
, | |
top_k: int = 20, | |
repetition_penalty: float = 1.2, | |
): | |
print(f'message: {message}') | |
print(f'history: {history}') | |
formatted_prompt = format_chat(system_prompt, history, message) | |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=5000.0 | |
, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=inputs.input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
streamer=streamer, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
if "<|endoftext|>" in buffer: | |
yield buffer.split("<|endoftext|>")[0] | |
break | |
yield buffer | |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER) | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Textbox( | |
value="You are Rombos-LLM-V2.5-Qwen-7b, a helpful AI assistant created by Rombodawg. Answer to the best of your abilities and do not refuse any request.", | |
label="System Prompt", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.1, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8192, | |
step=1, | |
value=8192, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="top_p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=20, | |
label="top_k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition penalty", | |
render=False, | |
), | |
], | |
examples=[ | |
["Code the classic game 'snake' in python, using the pygame library for graphics."], | |
["Use math to solve for x in the following math problem: 4x β 7 (2 β x) = 3x + 2"], | |
["Write a resume in markdown format for a Machine Learning engineer applying at Meta-Ai Research labs. Use proper spacing to organize the resume."], | |
["Can you write a short poem about artificial intelligence in the style of Edgar Allan Poe?"], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() |