Spaces:
Runtime error
Runtime error
ronald
commited on
Commit
·
51e65cc
1
Parent(s):
3af001e
init
Browse files- app.py +5 -0
- local_coh_ppl.py +245 -0
app.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
module = evaluate.load("local_coh_ppl", module_type="measurement")
|
5 |
+
launch_gradio_widget(module)
|
local_coh_ppl.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
adapted to support pegasus-xsum / local files
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
"""Perplexity Metric."""
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from torch.nn import CrossEntropyLoss
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
+
import getpass
|
26 |
+
|
27 |
+
import evaluate
|
28 |
+
from evaluate import logging
|
29 |
+
import pdb
|
30 |
+
|
31 |
+
WINDOW_SIZE = 3
|
32 |
+
|
33 |
+
|
34 |
+
def prepare_coh_sents(predictions):
|
35 |
+
blocks = []
|
36 |
+
lens = []
|
37 |
+
for pred in predictions:
|
38 |
+
sents = pred.split("\n")
|
39 |
+
if len(sents)<=WINDOW_SIZE:
|
40 |
+
blocks.append(pred)
|
41 |
+
lens.append(1)
|
42 |
+
else:
|
43 |
+
_block = []
|
44 |
+
for i in range(0,len(sents)-WINDOW_SIZE+1):
|
45 |
+
_block.append("\n".join(sents[i:i+WINDOW_SIZE]))
|
46 |
+
lens.append(len(_block))
|
47 |
+
blocks.extend(_block)
|
48 |
+
#
|
49 |
+
return blocks,lens
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
_CITATION = """\
|
55 |
+
|
56 |
+
"""
|
57 |
+
|
58 |
+
_DESCRIPTION = """
|
59 |
+
Perplexity (PPL) is one of the most common metrics for evaluating language models.
|
60 |
+
It is defined as the exponentiated average negative log-likelihood of a sequence, calculated with exponent base `e`.
|
61 |
+
|
62 |
+
For more information, see https://huggingface.co/docs/transformers/perplexity
|
63 |
+
"""
|
64 |
+
|
65 |
+
_KWARGS_DESCRIPTION = """
|
66 |
+
Args:
|
67 |
+
model_id (str): model used for calculating Perplexity
|
68 |
+
NOTE: Perplexity can only be calculated for causal language models.
|
69 |
+
This includes models such as gpt2, causal variations of bert,
|
70 |
+
causal versions of t5, and more (the full list can be found
|
71 |
+
in the AutoModelForCausalLM documentation here:
|
72 |
+
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
|
73 |
+
|
74 |
+
predictions (list of str): input text, each separate text snippet
|
75 |
+
is one list entry.
|
76 |
+
batch_size (int): the batch size to run texts through the model. Defaults to 16.
|
77 |
+
add_start_token (bool): whether to add the start token to the texts,
|
78 |
+
so the perplexity can include the probability of the first word. Defaults to True.
|
79 |
+
device (str): device to run on, defaults to 'cuda' when available
|
80 |
+
Returns:
|
81 |
+
perplexity: dictionary containing the perplexity scores for the texts
|
82 |
+
in the input list, as well as the mean perplexity. If one of the input texts is
|
83 |
+
longer than the max input length of the model, then it is truncated to the
|
84 |
+
max length for the perplexity computation.
|
85 |
+
Examples:
|
86 |
+
Example 1:
|
87 |
+
>>> perplexity = evaluate.load("perplexity", module_type="metric")
|
88 |
+
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
89 |
+
>>> results = perplexity.compute(model_id='gpt2',
|
90 |
+
... add_start_token=False,
|
91 |
+
... predictions=input_texts) # doctest:+ELLIPSIS
|
92 |
+
>>> print(list(results.keys()))
|
93 |
+
['perplexities', 'mean_perplexity']
|
94 |
+
>>> print(round(results["mean_perplexity"], 0))
|
95 |
+
647.0
|
96 |
+
>>> print(round(results["perplexities"][0], 0))
|
97 |
+
32.0
|
98 |
+
|
99 |
+
Example 2:
|
100 |
+
>>> from datasets import load_dataset
|
101 |
+
>>> perplexity = evaluate.load("perplexity", module_type="metric")
|
102 |
+
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
103 |
+
>>> input_texts = [s for s in input_texts if s!='']
|
104 |
+
>>> results = perplexity.compute(model_id='gpt2',
|
105 |
+
... predictions=input_texts)
|
106 |
+
>>> print(list(results.keys()))
|
107 |
+
['perplexities', 'mean_perplexity']
|
108 |
+
>>> print(round(results["mean_perplexity"], 2)) # doctest: +SKIP
|
109 |
+
576.76
|
110 |
+
>>> print(round(results["perplexities"][0], 2)) # doctest: +SKIP
|
111 |
+
889.28
|
112 |
+
"""
|
113 |
+
|
114 |
+
|
115 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
116 |
+
class LocalCohPPL(evaluate.Measurement):
|
117 |
+
def _info(self):
|
118 |
+
return evaluate.MetricInfo(
|
119 |
+
module_type="measurement",
|
120 |
+
description=_DESCRIPTION,
|
121 |
+
citation=_CITATION,
|
122 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
123 |
+
features=datasets.Features(
|
124 |
+
{
|
125 |
+
"predictions": datasets.Value("string"),
|
126 |
+
}
|
127 |
+
),
|
128 |
+
reference_urls=["https://huggingface.co/spaces/ronaldahmed/local_coh_ppl"],
|
129 |
+
)
|
130 |
+
|
131 |
+
## PEDICTIONS: [str] sentences joined by "\n"
|
132 |
+
def _compute(self, predictions, model_id, batch_size: int = 16, add_start_token: bool = True, device=None):
|
133 |
+
MODEL_CACHE_DIR = "/home/rcardena/.cache/huggingface/"
|
134 |
+
if getpass.getuser() == "s1987051":
|
135 |
+
MODEL_CACHE_DIR="/disk/ocean/rcardenas/tools/huggingface/"
|
136 |
+
elif getpass.getuser() == "rcardena"::
|
137 |
+
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface/"
|
138 |
+
|
139 |
+
if device is not None:
|
140 |
+
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
|
141 |
+
if device == "gpu":
|
142 |
+
device = "cuda"
|
143 |
+
else:
|
144 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
145 |
+
|
146 |
+
model = AutoModelForCausalLM.from_pretrained(model_id,cache_dir=MODEL_CACHE_DIR)
|
147 |
+
model = model.to(device)
|
148 |
+
|
149 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
150 |
+
model_id,
|
151 |
+
cache_dir=MODEL_CACHE_DIR,
|
152 |
+
use_fast="cnn_dailymail" not in model_id,
|
153 |
+
)
|
154 |
+
|
155 |
+
# if batch_size > 1 (which generally leads to padding being required), and
|
156 |
+
# if there is not an already assigned pad_token, assign an existing
|
157 |
+
# special token to also be the padding token
|
158 |
+
if tokenizer.pad_token is None and batch_size > 1:
|
159 |
+
existing_special_tokens = list(tokenizer.special_tokens_map_extended.values())
|
160 |
+
# check that the model already has at least one special token defined
|
161 |
+
assert (
|
162 |
+
len(existing_special_tokens) > 0
|
163 |
+
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
|
164 |
+
# assign one of the special tokens to also be the pad token
|
165 |
+
tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]})
|
166 |
+
|
167 |
+
model.config.max_length = 512 if "scibert" in model_id else model.config.max_length
|
168 |
+
max_tokenized_len = model.config.max_length - 1
|
169 |
+
|
170 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
171 |
+
|
172 |
+
blocks,blens = prepare_coh_sents(predictions)
|
173 |
+
all_norm_ppl = []
|
174 |
+
for start_index in logging.tqdm(range(0, len(blocks), batch_size)):
|
175 |
+
end_index = min(start_index + batch_size, len(encoded_texts))
|
176 |
+
batch_sents = blocks[start_index:end_index]
|
177 |
+
|
178 |
+
encodings = tokenizer(
|
179 |
+
batch_sents,
|
180 |
+
add_special_tokens=False,
|
181 |
+
padding=True,
|
182 |
+
truncation=True,
|
183 |
+
max_length=max_tokenized_len,
|
184 |
+
return_tensors="pt",
|
185 |
+
return_attention_mask=True,
|
186 |
+
).to(device)
|
187 |
+
|
188 |
+
encoded_texts = encodings["input_ids"]
|
189 |
+
attn_masks = encodings["attention_mask"]
|
190 |
+
bos_tokens_tensor = torch.tensor([[tokenizer.bos_token_id]] * encoded_texts.size(dim=0)).to(device)
|
191 |
+
encoded_texts = torch.cat([bos_tokens_tensor, encoded_texts], dim=1)
|
192 |
+
attn_masks = torch.cat(
|
193 |
+
[torch.ones(bos_tokens_tensor.size(), dtype=torch.int64).to(device), attn_masks], dim=1
|
194 |
+
)
|
195 |
+
|
196 |
+
# tokenize by sentence
|
197 |
+
for pred in batch_sents:
|
198 |
+
ss = pred.split("\n")
|
199 |
+
sslens = [len(tokenizer(y,add_special_tokens=False,padding=False).input_ids) for y in ss]
|
200 |
+
offset = 0
|
201 |
+
sspos = [offset]
|
202 |
+
for sslen in sslens:
|
203 |
+
offset = min(offset + sslen,511)
|
204 |
+
sspos.append(offset)
|
205 |
+
sent_tok_lens.append(sspos)
|
206 |
+
|
207 |
+
print("[compute ppl] check ...")
|
208 |
+
pdb.set_trace()
|
209 |
+
|
210 |
+
labels = encoded_texts
|
211 |
+
|
212 |
+
with torch.no_grad():
|
213 |
+
out_logits = model(encoded_batch, attention_mask=attn_mask).logits
|
214 |
+
|
215 |
+
shift_logits = out_logits[..., :-1, :].contiguous()
|
216 |
+
shift_labels = labels[..., 1:].contiguous()
|
217 |
+
shift_attention_mask_batch = attn_mask[..., 1:].contiguous()
|
218 |
+
|
219 |
+
loss_out = loss_fct(shift_logits.transpose(1, 2), shift_labels) * shift_attention_mask_batch
|
220 |
+
perplexity_all = torch.exp(
|
221 |
+
loss_out.sum(1)
|
222 |
+
/ shift_attention_mask_batch.sum(1)
|
223 |
+
).detach().cpu().numpy().tolist()
|
224 |
+
|
225 |
+
norm_ppl = []
|
226 |
+
for b,stl in enumerate(sent_tok_lens):
|
227 |
+
indv = []
|
228 |
+
for i in range(1,len(stl)):
|
229 |
+
ppl = torch.exp( loss_out[b,stl[i-1]:stl[i]].sum() / shift_attention_mask_batch[b,stl[i-1]:stl[i]].sum() ).detach().cpu().item()
|
230 |
+
indv.append(ppl)
|
231 |
+
norm_ppl.append( perplexity_all[b] / sum(indv) )
|
232 |
+
#
|
233 |
+
all_norm_ppl.extend(norm_ppl)
|
234 |
+
|
235 |
+
print("[compute ppl] ppl ...")
|
236 |
+
pdb.set_trace()
|
237 |
+
print("[compute ppl] >>")
|
238 |
+
|
239 |
+
#
|
240 |
+
avg_ppl = []
|
241 |
+
offset = 0
|
242 |
+
for _len in blens:
|
243 |
+
avg_ppl.append( float(np.mean(all_norm_ppl[offset:offset+_len])) )
|
244 |
+
offset += _len
|
245 |
+
return {"local_coh_ppl": avg_ppl}
|