Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,72 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
-
from TTS.api import TTS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
captioner = pipeline(model="microsoft/git-base")
|
6 |
-
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
7 |
|
8 |
|
9 |
def predict(image):
|
10 |
text = captioner(image)[0]["generated_text"]
|
11 |
|
12 |
-
audio_output = "output.wav"
|
13 |
-
tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output)
|
|
|
14 |
|
15 |
-
return text,
|
16 |
|
17 |
demo = gr.Interface(
|
18 |
fn=predict,
|
19 |
inputs=gr.Image(type="pil"),
|
20 |
-
outputs=['text', gr.Audio()]
|
21 |
)
|
22 |
|
23 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
# from TTS.api import TTS
|
4 |
+
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
10 |
+
|
11 |
+
|
12 |
+
checkpoint = "microsoft/speecht5_tts"
|
13 |
+
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
14 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
15 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
16 |
+
|
17 |
+
def tts(text):
|
18 |
+
if len(text.strip()) == 0:
|
19 |
+
return (16000, np.zeros(0).astype(np.int16))
|
20 |
+
|
21 |
+
inputs = processor(text=text, return_tensors="pt")
|
22 |
+
|
23 |
+
# limit input length
|
24 |
+
input_ids = inputs["input_ids"]
|
25 |
+
input_ids = input_ids[..., :model.config.max_text_positions]
|
26 |
+
|
27 |
+
# if speaker == "Surprise Me!":
|
28 |
+
# # load one of the provided speaker embeddings at random
|
29 |
+
# idx = np.random.randint(len(speaker_embeddings))
|
30 |
+
# key = list(speaker_embeddings.keys())[idx]
|
31 |
+
# speaker_embedding = np.load(speaker_embeddings[key])
|
32 |
+
|
33 |
+
# # randomly shuffle the elements
|
34 |
+
# np.random.shuffle(speaker_embedding)
|
35 |
+
|
36 |
+
# # randomly flip half the values
|
37 |
+
# x = (np.random.rand(512) >= 0.5) * 1.0
|
38 |
+
# x[x == 0] = -1.0
|
39 |
+
# speaker_embedding *= x
|
40 |
+
|
41 |
+
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
|
42 |
+
# else:
|
43 |
+
speaker_embedding = np.load("cmu_us_bdl_arctic-wav-arctic_a0009.npy")
|
44 |
+
|
45 |
+
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
46 |
+
|
47 |
+
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
|
48 |
+
|
49 |
+
speech = (speech.numpy() * 32767).astype(np.int16)
|
50 |
+
return (16000, speech)
|
51 |
+
|
52 |
|
53 |
captioner = pipeline(model="microsoft/git-base")
|
54 |
+
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
55 |
|
56 |
|
57 |
def predict(image):
|
58 |
text = captioner(image)[0]["generated_text"]
|
59 |
|
60 |
+
# audio_output = "output.wav"
|
61 |
+
# tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output)
|
62 |
+
audio = tts(text)
|
63 |
|
64 |
+
return text, audio
|
65 |
|
66 |
demo = gr.Interface(
|
67 |
fn=predict,
|
68 |
inputs=gr.Image(type="pil"),
|
69 |
+
outputs=['text', gr.Audio(type="numpy")]
|
70 |
)
|
71 |
|
72 |
demo.launch()
|