Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,13 +7,17 @@ import numpy as np
|
|
7 |
import torch
|
8 |
|
9 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
|
|
10 |
|
11 |
|
12 |
checkpoint = "microsoft/speecht5_tts"
|
13 |
-
|
14 |
-
|
15 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
16 |
|
|
|
|
|
|
|
17 |
def tts(text):
|
18 |
if len(text.strip()) == 0:
|
19 |
return (16000, np.zeros(0).astype(np.int16))
|
@@ -22,7 +26,7 @@ def tts(text):
|
|
22 |
|
23 |
# limit input length
|
24 |
input_ids = inputs["input_ids"]
|
25 |
-
input_ids = input_ids[..., :
|
26 |
|
27 |
# if speaker == "Surprise Me!":
|
28 |
# # load one of the provided speaker embeddings at random
|
@@ -44,21 +48,26 @@ def tts(text):
|
|
44 |
|
45 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
46 |
|
47 |
-
speech =
|
48 |
|
49 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
50 |
return (16000, speech)
|
51 |
|
52 |
|
53 |
-
captioner = pipeline(model="microsoft/git-base")
|
54 |
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
55 |
|
56 |
|
57 |
def predict(image):
|
58 |
-
text = captioner(image)[0]["generated_text"]
|
59 |
|
60 |
# audio_output = "output.wav"
|
61 |
# tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output)
|
|
|
|
|
|
|
|
|
|
|
62 |
audio = tts(text)
|
63 |
|
64 |
return text, audio
|
@@ -74,6 +83,3 @@ demo = gr.Interface(
|
|
74 |
)
|
75 |
|
76 |
demo.launch()
|
77 |
-
|
78 |
-
# gr.Interface.load("models/ronniet/git-base-env").launch()
|
79 |
-
# gr.Interface.load("models/microsoft/git-base").launch()
|
|
|
7 |
import torch
|
8 |
|
9 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
10 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
11 |
|
12 |
|
13 |
checkpoint = "microsoft/speecht5_tts"
|
14 |
+
tts_processor = SpeechT5Processor.from_pretrained(checkpoint)
|
15 |
+
tts_model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
16 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
17 |
|
18 |
+
ic_processor = AutoProcessor.from_pretrained("microsoft/git-base")
|
19 |
+
ic_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base")
|
20 |
+
|
21 |
def tts(text):
|
22 |
if len(text.strip()) == 0:
|
23 |
return (16000, np.zeros(0).astype(np.int16))
|
|
|
26 |
|
27 |
# limit input length
|
28 |
input_ids = inputs["input_ids"]
|
29 |
+
input_ids = input_ids[..., :tts_model.config.max_text_positions]
|
30 |
|
31 |
# if speaker == "Surprise Me!":
|
32 |
# # load one of the provided speaker embeddings at random
|
|
|
48 |
|
49 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
50 |
|
51 |
+
speech = tts_model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
|
52 |
|
53 |
speech = (speech.numpy() * 32767).astype(np.int16)
|
54 |
return (16000, speech)
|
55 |
|
56 |
|
57 |
+
# captioner = pipeline(model="microsoft/git-base")
|
58 |
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
59 |
|
60 |
|
61 |
def predict(image):
|
62 |
+
# text = captioner(image)[0]["generated_text"]
|
63 |
|
64 |
# audio_output = "output.wav"
|
65 |
# tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=audio_output)
|
66 |
+
|
67 |
+
pixel_values = ic_processor(images=image, return_tensors="pt").pixel_values
|
68 |
+
text_ids = ic_model.generate(pixel_values=pixel_values, max_length=50)
|
69 |
+
text = ic_processor.batch_decode(text_ids, skip_special_tokens=True)[0]
|
70 |
+
|
71 |
audio = tts(text)
|
72 |
|
73 |
return text, audio
|
|
|
83 |
)
|
84 |
|
85 |
demo.launch()
|
|
|
|
|
|