Update app.py
Browse files
app.py
CHANGED
@@ -28,4 +28,47 @@ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5Hif
|
|
28 |
checkpoint = "microsoft/speecht5_tts"
|
29 |
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
30 |
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
31 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
checkpoint = "microsoft/speecht5_tts"
|
29 |
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
30 |
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
31 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
32 |
+
|
33 |
+
def predict(text):
|
34 |
+
if len(text.strip()) == 0:
|
35 |
+
return (16000, np.zeros(0).astype(np.int16))
|
36 |
+
|
37 |
+
inputs = processor(text=text, return_tensors="pt")
|
38 |
+
|
39 |
+
# limit input length
|
40 |
+
input_ids = inputs["input_ids"]
|
41 |
+
input_ids = input_ids[..., :model.config.max_text_positions]
|
42 |
+
|
43 |
+
# if speaker == "Surprise Me!":
|
44 |
+
# # load one of the provided speaker embeddings at random
|
45 |
+
# idx = np.random.randint(len(speaker_embeddings))
|
46 |
+
# key = list(speaker_embeddings.keys())[idx]
|
47 |
+
# speaker_embedding = np.load(speaker_embeddings[key])
|
48 |
+
|
49 |
+
# # randomly shuffle the elements
|
50 |
+
# np.random.shuffle(speaker_embedding)
|
51 |
+
|
52 |
+
# # randomly flip half the values
|
53 |
+
# x = (np.random.rand(512) >= 0.5) * 1.0
|
54 |
+
# x[x == 0] = -1.0
|
55 |
+
# speaker_embedding *= x
|
56 |
+
|
57 |
+
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
|
58 |
+
# else:
|
59 |
+
speaker_embedding = np.load("cmu_us_bdl_arctic-wav-arctic_a0009.npy")
|
60 |
+
|
61 |
+
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
62 |
+
|
63 |
+
speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)
|
64 |
+
|
65 |
+
speech = (speech.numpy() * 32767).astype(np.int16)
|
66 |
+
return (16000, speech)
|
67 |
+
|
68 |
+
demo = gr.Interface(
|
69 |
+
fn = predict,
|
70 |
+
inputs="text",
|
71 |
+
outputs=gr.Audio(type="numpy")
|
72 |
+
)
|
73 |
+
|
74 |
+
demo.launch()
|