ruanchaves's picture
feat: first version
9d08804
raw
history blame
1.85 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_list = [
"ruanchaves/mdeberta-v3-base-assin2-similarity",
"ruanchaves/bert-base-portuguese-cased-assin2-similarity",
"ruanchaves/bert-large-portuguese-cased-assin2-similarity",
"ruanchaves/mdeberta-v3-base-assin-similarity",
"ruanchaves/bert-base-portuguese-cased-assin-similarity",
"ruanchaves/bert-large-portuguese-cased-assin-similarity",
]
model_array = []
for model_name in model_list:
row = {}
row["tokenizer"] = AutoTokenizer.from_pretrained(model_name)
row["model"] = AutoModelForSequenceClassification.from_pretrained(model_name)
model_array.append(row)
def similarity(s1, s2):
scores = []
for row in model_array:
tokenizer = row["tokenizer"]
model = row["model"]
model_input = tokenizer(*([s1, s1], [s2, s1]), padding=True, return_tensors="pt")
with torch.no_grad():
output = model(**model_input)
score = output[0][0].item()
scores.append(score)
return sum(scores) / len(scores)
inputs = [
gr.inputs.Textbox(label="Text 1"),
gr.inputs.Textbox(label="Text 2")
]
outputs = gr.outputs.Textbox(label="Similarity Score")
gr.Interface(fn=similarity, inputs=inputs, outputs=outputs, title="Semantic Similarity",
description="Calculates semantic similarity between two pieces of text using multiple pre-trained models.",
examples=[["A quem é atribuida a invenção do ábaco?", "A primeira ferramenta conhecida para a computação foi o ábaco, cuja invenção é atribuída a habitantes da Mesopotâmia, em torno de 2700–2300 a.C.."],
["I love pizza", "Pizza is my favorite food"],
["I hate cats", "I love dogs"]]).launch()